vllm-project / vllm

A high-throughput and memory-efficient inference and serving engine for LLMs
https://docs.vllm.ai
Apache License 2.0
30.88k stars 4.7k forks source link

[Bug]: illegal memory access error when using prefix caching #9918

Open StevenTang1998 opened 3 weeks ago

StevenTang1998 commented 3 weeks ago

Your current environment

The output of `python collect_env.py` ```text PyTorch version: 2.4.0+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.27.9 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.10.134-16.101.al8.x86_64-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA L20Y GPU 1: NVIDIA L20Y GPU 2: NVIDIA L20Y GPU 3: NVIDIA L20Y Nvidia driver version: 535.161.08 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 192 On-line CPU(s) list: 0-191 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8468V CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 48 Socket(s): 2 Stepping: 8 CPU max MHz: 3800.0000 CPU min MHz: 800.0000 BogoMIPS: 4800.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req hfi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm uintr md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 4.5 MiB (96 instances) L1i cache: 3 MiB (96 instances) L2 cache: 192 MiB (96 instances) L3 cache: 195 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-47,96-143 NUMA node1 CPU(s): 48-95,144-191 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-dali-cuda120==1.32.0 [pip3] nvidia-ml-py==12.560.30 [pip3] nvidia-nccl-cu12==2.20.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] nvidia-pyindex==1.0.9 [pip3] onnx==1.15.0rc2 [pip3] optree==0.10.0 [pip3] pynvml==11.5.3 [pip3] pytorch-quantization==2.1.2 [pip3] pyzmq==25.1.2 [pip3] torch==2.4.0 [pip3] torch-tensorrt==2.2.0a0 [pip3] torchdata==0.7.0a0 [pip3] torchtext==0.17.0a0 [pip3] torchvision==0.19.0 [pip3] transformers==4.46.0 [pip3] transformers-stream-generator==0.0.5 [pip3] triton==3.0.0 [conda] Could not collect ROCM Version: Could not collect Neuron SDK Version: N/A vLLM Version: 0.6.3.post1 vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: GPU0 GPU1 GPU2 GPU3 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X NV8 NV8 NV8 SYS SYS SYS SYS PIX NODE NODE NODE 48-95,144-191 1 N/A GPU1 NV8 X NV8 NV8 SYS SYS SYS SYS NODE PIX NODE NODE 48-95,144-191 1 N/A GPU2 NV8 NV8 X NV8 SYS SYS SYS SYS NODE NODE PIX NODE 48-95,144-191 1 N/A GPU3 NV8 NV8 NV8 X SYS SYS SYS SYS NODE NODE NODE PIX 48-95,144-191 1 N/A NIC0 SYS SYS SYS SYS X NODE NODE NODE SYS SYS SYS SYS NIC1 SYS SYS SYS SYS NODE X NODE NODE SYS SYS SYS SYS NIC2 SYS SYS SYS SYS NODE NODE X NODE SYS SYS SYS SYS NIC3 SYS SYS SYS SYS NODE NODE NODE X SYS SYS SYS SYS NIC4 PIX NODE NODE NODE SYS SYS SYS SYS X NODE NODE NODE NIC5 NODE PIX NODE NODE SYS SYS SYS SYS NODE X NODE NODE NIC6 NODE NODE PIX NODE SYS SYS SYS SYS NODE NODE X NODE NIC7 NODE NODE NODE PIX SYS SYS SYS SYS NODE NODE NODE X Legend: X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks NIC Legend: NIC0: mlx5_bond_0 NIC1: mlx5_bond_1 NIC2: mlx5_bond_2 NIC3: mlx5_bond_3 NIC4: mlx5_bond_4 NIC5: mlx5_bond_5 NIC6: mlx5_bond_6 NIC7: mlx5_bond_7 ```

Model Input Dumps

No response

🐛 Describe the bug

As discussed in https://github.com/vllm-project/vllm/pull/9532, setting enable_prefix_caching=True leads to illegal memory access error when using 8 H100 GPUs.

This is the code to reproduce the error:

import torch

from vllm import LLM, SamplingParams

sampling_params = SamplingParams(temperature=0, max_tokens=8192, seed=1234)
llm = LLM(model='Qwen/Qwen2.5-72B-Instruct', enable_prefix_caching=True, tensor_parallel_size=8, enable_chunked_prefill=False)

prompts = torch.load('test.id')
outputs = llm.generate(prompts, sampling_params=sampling_params, use_tqdm=False)

test.id.zip

Please unzip the file to get test.id

Before submitting a new issue...

wallashss commented 2 weeks ago

Hey, I am interested in this problem as well with H100.

One question: Have you tried to disable CUDA Graphs with enforce_eager=True? Does it change at least your error?

StevenTang1998 commented 2 weeks ago

Yes, it works.

wallashss commented 2 weeks ago

Tks @StevenTang1998

luffydream commented 2 weeks ago

--enforce-eager will disable cudagraph. So , How can i enable multi-steps and cudagraph at the same time?

luffydream commented 2 weeks ago

--enforce-eager will disable cudagraph. So , How can i enable multi-steps and cudagraph at the same time?