Closed Vimos closed 2 years ago
目前训练时,losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl] 出现了大量的nan和inf,请问这个属于正常的吗?
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
INFO:ljs_base:====> Epoch: 36 INFO:ljs_base:Train Epoch: 37 [22%] INFO:ljs_base:[nan, nan, nan, 83.04302978515625, 0.9958622455596924, inf, 28400, 0.0001990770782180657] INFO:ljs_base:Train Epoch: 37 [48%] INFO:ljs_base:[nan, nan, nan, 84.82212829589844, 0.9872239828109741, inf, 28600, 0.0001990770782180657] INFO:ljs_base:Train Epoch: 37 [73%] INFO:ljs_base:[nan, nan, nan, 88.02903747558594, 1.0118815898895264, inf, 28800, 0.0001990770782180657] INFO:ljs_base:Train Epoch: 37 [99%] INFO:ljs_base:[nan, nan, nan, 91.33515167236328, 0.9768699407577515, inf, 29000, 0.0001990770782180657]
关闭原因:我自己使用的https://github.com/resemble-ai/monotonic_align和自带的计算结果不一致,改回去就不会inf了。
https://github.com/resemble-ai/monotonic_align
目前训练时,
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
出现了大量的nan和inf,请问这个属于正常的吗?