wanghaisheng / awesome-ocr

A curated list of promising OCR resources
http://wanghaisheng.github.io/ocr-arxiv-daily/
MIT License
1.66k stars 351 forks source link

Full-Page Text Recognition: Learning Where to Start and When to Stop #55

Closed wanghaisheng closed 6 years ago

wanghaisheng commented 7 years ago

https://arxiv.org/abs/1707.06810

Text line detection and localization is a crucial step for full page document analysis, but still suffers from heterogeneity of real life documents. In this paper, we present a new approach for full page text recognition. Localization of the text lines is based on regressions with Fully Convolutional Neural Networks and Multidimensional Long Short-Term Memory as contextual layers. In order to increase the efficiency of this localization method, only the position of the left side of the text lines are predicted. The text recognizer is then in charge of predicting the end of the text to recognize. This method has shown good results for full page text recognition on the highly heterogeneous Maurdor dataset.

wanghaisheng commented 7 years ago

Scene Text Detection via Holistic, Multi-Channel Prediction https://arxiv.org/pdf/1606.09002.pdf

Recently, scene text detection has become an active research topic in computer vision and document analysis, because of its great importance and significant challenge. However, vast majority of the existing methods detect text within local regions, typically through extracting character, word or line level candidates followed by candidate aggregation and false positive elimination, which potentially exclude the effect of wide-scope and long-range contextual cues in the scene. To take full advantage of the rich information available in the whole natural image, we propose to localize text in a holistic manner, by casting scene text detection as a semantic segmentation problem. The proposed algorithm directly runs on full images and produces global, pixel-wise prediction maps, in which detections are subsequently formed. To better make use of the properties of text, three types of information regarding text region, individual characters and their relationship are estimated, with a single Fully Convolutional Network (FCN) model. With such predictions of text properties, the proposed algorithm can simultaneously handle horizontal, multi-oriented and curved text in real-world natural images. The experiments on standard benchmarks, including ICDAR 2013, ICDAR 2015 and MSRA-TD500, demonstrate that the proposed algorithm substantially outperforms previous state-of-the-art approaches. Moreover, we report the first baseline result on the recently-released, large-scale dataset COCO-Text.

wanghaisheng commented 7 years ago

Joint Line Segmentation and Transcription for End-to-End Handwritten Paragraph Recognition

Offline handwriting recognition systems require cropped text line images for both training and recognition. On the one hand, the annotation of position and transcript at line level is costly to obtain. On the other hand, automatic line segmentation algorithms are prone to errors, compromising the subsequent recognition. In this paper, we propose a modification of the popular and efficient multi-dimensional long short-term memory recurrent neural networks (MDLSTM-RNNs) to enable end-to-end processing of handwritten paragraphs. More particularly, we replace the collapse layer transforming the two-dimensional representation into a sequence of predictions by a recurrent version which can recognize one line at a time. In the proposed model, a neural network performs a kind of implicit line segmentation by computing attention weights on the image representation. The experiments on paragraphs of Rimes and IAM database yield results that are competitive with those of networks trained at line level, and constitute a significant step towards end-to-end transcription of full documents.

wanghaisheng commented 7 years ago

Scene Text Recognition with Sliding Convolutional Character Models

Scene text recognition has attracted great interests from the computer vision and pattern recognition community in recent years. State-of-the-art methods use concolutional neural networks (CNNs), recurrent neural networks with long short-term memory (RNN-LSTM) or the combination of them. In this paper, we investigate the intrinsic characteristics of text recognition, and inspired by human cognition mechanisms in reading texts, we propose a scene text recognition method with character models on convolutional feature map. The method simultaneously detects and recognizes characters by sliding the text line image with character models, which are learned end-to-end on text line images labeled with text transcripts. The character classifier outputs on the sliding windows are normalized and decoded with Connectionist Temporal Classification (CTC) based algorithm. Compared to previous methods, our method has a number of appealing properties: (1) It avoids the difficulty of character segmentation which hinders the performance of segmentation-based recognition methods; (2) The model can be trained simply and efficiently because it avoids gradient vanishing/exploding in training RNN-LSTM based models; (3) It bases on character models trained free of lexicon, and can recognize unknown words. (4) The recognition process is highly parallel and enables fast recognition. Our experiments on several challenging English and Chinese benchmarks, including the IIIT-5K, SVT, ICDAR03/13 and TRW15 datasets, demonstrate that the proposed method yields superior or comparable performance to state-of-the-art methods while the model size is relatively small.

wanghaisheng commented 7 years ago

Learning to Extract Semantic Structure from Documents Using Multimodal Fully Convolutional Neural Network

We present an end-to-end, multimodal, fully convolutional network for extracting semantic structures from document images. We consider document semantic structure extraction as a pixel-wise segmentation task, and propose a unified model that classifies pixels based not only on their visual appearance, as in the traditional page segmentation task, but also on the content of underlying text. Moreover, we propose an efficient synthetic document generation process that we use to generate pretraining data for our network. Once the network is trained on a large set of synthetic documents, we fine-tune the network on unlabeled real documents using a semi-supervised approach. We systematically study the optimum network architecture and show that both our multimodal approach and the synthetic data pretraining significantly boost the performance.

wanghaisheng commented 7 years ago

通过旋转候选框实现任意方向的场景文本检测 http://www.jianshu.com/p/379dede5979c