Closed agunapal closed 3 years ago
def audiowrite(destpath, audio, sample_rate):
'''Function to write audio'''
import soundfile as sf
destpath = os.path.abspath(destpath)
destdir = os.path.dirname(destpath)
if not os.path.exists(destdir):
os.makedirs(destdir)
sf.write(destpath, audio, sample_rate)
return
def predict_torchmodel(model, noisy_path, save_path):
assert os.path.exists(noisy_path), "noisy path error:" + noisy_path
noisy_wave, frq = sf.read(noisy_path)
assert frq == 16000, "sample rate must equal 16000"
with torch.no_grad():
net_inp = torch.tensor(noisy_wave)[None].to(torch.float32)
estimate = model.istft(model(net_inp)).squeeze(1).cpu().data.numpy().flatten()
audiowrite(save_path, estimate, frq)
Thanks..I get this error. RuntimeError: Expected 3-dimensional input for 3-dimensional weight [514, 1, 400], but got 2-dimensional input of size [1, 4046800] instead line 93, in forward outputs = F.conv_transpose1d(inputs, self.weight, stride=self.stride)
oh, sorry! To such:
def predict_torchmodel(model, noisy_path, save_path):
assert os.path.exists(noisy_path), "noisy path error:" + noisy_path
noisy_wave, frq = sf.read(noisy_path)
assert frq == 16000, "sample rate must equal 16000"
with torch.no_grad():
net_inp = torch.tensor(noisy_wave)[None].to(torch.float32)
estimate = model(net_inp).squeeze(1).cpu().data.numpy().flatten()
audiowrite(save_path, estimate, frq)
Thank you. That worked
Hello, Thank you for sharing your code. Can you please the inference script as well.