wanmeihuali / taichi_3d_gaussian_splatting

An unofficial implementation of paper 3D Gaussian Splatting for Real-Time Radiance Field Rendering by taichi lang.
Apache License 2.0
666 stars 62 forks source link

Switch camera pose from SE3 to quaternion, also support multiple camera poses for later dynamic object. #61

Closed wanmeihuali closed 1 year ago

wanmeihuali commented 1 year ago

Switch camera pose from SE3 to quaternion, to simplify later pose optimization. Also, a simple idea is to assign an object id to each point, take some 6DOF pose estimation for moving objects as input, then handle rigid objects as points with different camera poses (movement of the object is transformed into the movement of the camera). In this PR, we first change the input format for rasterization. Will try to support the whole feature in later PR.

github-actions[bot] commented 1 year ago

Running experiment on sagemaker with git sha 9a30d168f59b32c154ea6f5b9abefd58344f2db6

github-actions[bot] commented 1 year ago

Training job camera-pose-qt-and-multi-obj-9a30d16-230629-080231-tat-truck created

github-actions[bot] commented 1 year ago

Training job camera-pose-qt-and-multi-obj-9a30d16-230629-080231-tat-truck completed.

Model url: s3://taichi-3d-gaussian-splatting-log/tat-truck/camera-pose-qt-and-multi-obj-9a30d16-230629-080231-tat-truck/output/model.tar.gz,

tensorboard output path: s3://taichi-3d-gaussian-splatting-log/tat-truck/camera-pose-qt-and-multi-obj-9a30d16-230629-080231-tat-truck/output/output.tar.gz

github-actions[bot] commented 1 year ago

Training job camera-pose-qt-and-multi-obj-9a30d16-230629-080231-tat-truck final metrics:

Latest Metrics

train:ssimloss train:psnr val:ssim train:ssim train:loss train:num_valid_points train:l1loss val:loss val:psnr train:iteration
0.1402938961982727 26.190698623657227 0.8397595286369324 0.8597061038017273 0.05099417641758919 440195.0 0.028669243678450584 0.060268305242061615 24.510377883911133 30000.0

Max Metrics

val:5kssim train:5kpsnr train:7kssim val:5kpsnr train:psnr val:ssim train:ssim train:5kssim val:psnr val:7kssim val:7kpsnr train:7kpsnr
0.773842990398407 22.222253799438477 0.7961171865463257 22.148059844970703 26.190698623657227 0.8397595286369324 0.8597061038017273 0.8031989932060242 24.510377883911133 0.7987189292907715 22.8942928314209 22.990148544311523