wantedly / machine-learning-round-table

Gather around the table, and have a discussion to catch up the latest trend of machine learning 🤖
https://www.wantedly.com/projects/391912
305 stars 2 forks source link

[2023/11/08]Machine Learning 輪講 #219

Open nogawanogawa opened 1 year ago

nogawanogawa commented 1 year ago

Why

Machine Learning 輪講は最新の技術や論文を追うことで、エンジニアが「技術で解決できること」のレベルをあげていくことを目的にした会です。

prev. https://github.com/wantedly/machine-learning-round-table/issues/217

What

話したいことがある人はここにコメントしましょう! 面白いものを見つけた時点でとりあえず話すという宣言だけでもしましょう!

Hayashi-Yudai commented 12 months ago

LightLM: A Lightweight Deep and Narrow Language Model for Generative Recommendation

nogawanogawa commented 12 months ago

How to Index Item IDs for Recommendation Foundation Models

論文URL

https://arxiv.org/abs/2305.06569

著者

Wenyue Hua, Shuyuan Xu, Yingqiang Ge, Yongfeng Zhang

会議

SIGIR-AP 2023

背景

生成タスクである以上生成するIDに何らかの意味を持たせないと、全く見当違いのIDを生成してしまう恐れがある。しかし、LLMで扱えるような意味を持ったIDをアイテムに一意に割り当てるのは簡単ではない。アイテム数は膨大に存在しそれらに対して一意のIDを割り当てる必要があり、自然言語と互換性がありLLMの学習やプロンプトで扱えなければいけない。 さらに、生成されたテキストが実際のアイテムと一致することを保証しなければいけない(ハルシネーションの回避)が、制約付き複合法を用いると長文生成能力を持つLLMの柔軟性を損なってしまう。

目的

生成的推薦で使用しやすいIDの生成方法の検討

アプローチ

Sequential Indexing

下記のように、ログに登場した順にIDを降っていく。

image

このとき同様のアイテムに対するインタラクションが発生した時にはそのIDを使用する。

Collaborative Indexing

image

協調フィルタリングの成分を反映させたインデックス法。 アイテム(ノード)とその共起度(エッジ)をグラフ構造で表現し、ノードクラスタリングによってインデックスとなるラベルを決めていく

Semantic (Content-based) Indexing

コンテンツベースのインデックス。カテゴリ情報の組み合わせをIDとする。

image

Hybrid Indexing

複数の手法の組み合わせ。

memo

https://github.com/nogawanogawa/paper_memo/issues/98

zerebom commented 12 months ago

Unbiased Offline Evaluation for Learning to Rank with Business Rules