Closed dmnapolitano closed 1 month ago
This looks great, thanks for the refactor. I'm curious though, how does pred_turnout appear in the aggregated csvs? especially cuz it's not in the printout we get at the end of running the model (but pred_turnout is there for the units if we include those)
This looks great, thanks for the refactor. I'm curious though, how does pred_turnout appear in the aggregated csvs? especially cuz it's not in the printout we get at the end of running the model (but pred_turnout is there for the units if we include those)
Wait, for real? I thought I saw it there. Let me check 🤔
Also thanks 😄
This looks great, thanks for the refactor. I'm curious though, how does pred_turnout appear in the aggregated csvs? especially cuz it's not in the printout we get at the end of running the model (but pred_turnout is there for the units if we include those)
Wait, for real? I thought I saw it there. Let me check 🤔
Also thanks 😄
Ok, maybe I'm looking at the wrong stuff 🤔 Here's what I did:
git checkout
this branchpip install -e . --force-reinstall
to be ultra-sure this branch is installedelexmodel
command aboveMy output (on stdout
) is this:
state_data
postal_code pred_margin results_margin reporting pred_turnout lower_0.7_margin upper_0.7_margin lower_0.9_margin upper_0.9_margin
0 AL -0.393030 -0.393030 67.0 1356532.0 -0.393030 -0.393030 -0.393030 -0.393030
1 AR -0.283264 -0.283264 75.0 888040.0 -0.283264 -0.283264 -0.283264 -0.283264
2 AZ 0.006689 0.006689 15.0 2558664.0 0.006689 0.006689 0.006689 0.006689
3 CA 0.183590 0.183590 58.0 10933009.0 0.183590 0.183590 0.183590 0.183590
4 CO 0.198016 0.198016 64.0 2451521.0 0.198016 0.198016 0.198016 0.198016
5 CT 0.130843 0.130843 169.0 1256542.0 0.130843 0.130843 0.130843 0.130843
6 FL -0.195396 -0.195396 67.0 7719252.0 -0.195396 -0.195396 -0.195396 -0.195396
7 GA -0.076204 -0.076204 159.0 3921799.0 -0.076204 -0.076204 -0.076204 -0.076204
8 HI 0.264236 0.264236 4.0 411159.0 0.264236 0.264236 0.264236 0.264236
9 IA -0.189771 -0.189771 99.0 1192095.0 -0.189771 -0.189771 -0.189771 -0.189771
10 ID -0.498027 -0.498027 44.0 478743.0 -0.498027 -0.498027 -0.498027 -0.498027
11 IL 0.122584 0.122584 102.0 3915537.0 0.122584 0.122584 0.122584 0.122584
12 KS 0.021666 0.021666 105.0 963618.0 0.021666 0.021666 0.021666 0.021666
13 MA 0.291131 0.291131 350.0 2393921.0 0.291131 0.291131 0.291131 0.291131
14 MD 0.335384 0.335384 24.0 1937978.0 0.335384 0.335384 0.335384 0.335384
15 MI 0.107078 0.107078 83.0 4386296.0 0.107078 0.107078 0.107078 0.107078
16 MN 0.079106 0.079106 87.0 2432290.0 0.079106 0.079106 0.079106 0.079106
17 NE -0.247787 -0.247787 93.0 632948.0 -0.247787 -0.247787 -0.247787 -0.247787
18 NH -0.156591 -0.156591 238.0 608874.0 -0.156591 -0.156591 -0.156591 -0.156591
19 NM 0.065389 0.065389 33.0 694732.0 0.065389 0.065389 0.065389 0.065389
20 NV -0.014417 -0.014417 17.0 968663.0 -0.014417 -0.014417 -0.014417 -0.014417
21 NY 0.057081 0.057081 62.0 5734113.0 0.057081 0.057081 0.057081 0.057081
22 OH -0.255851 -0.255851 88.0 4025984.0 -0.255851 -0.255851 -0.255851 -0.255851
23 OK -0.140599 -0.140599 77.0 1120306.0 -0.140599 -0.140599 -0.140599 -0.140599
24 OR 0.037754 0.037754 36.0 1767421.0 0.037754 0.037754 0.037754 0.037754
25 PA 0.150363 0.150363 67.0 5262621.0 0.150363 0.150363 0.150363 0.150363
26 RI 0.196523 0.196523 39.0 345130.0 0.196523 0.196523 0.196523 0.196523
27 SC -0.175953 -0.175953 46.0 1681192.0 -0.175953 -0.175953 -0.175953 -0.175953
28 SD -0.275992 -0.275992 66.0 340140.0 -0.275992 -0.275992 -0.275992 -0.275992
29 TN -0.326978 -0.326978 95.0 1700250.0 -0.326978 -0.326978 -0.326978 -0.326978
30 TX -0.111414 -0.111414 254.0 7965807.0 -0.111414 -0.111414 -0.111414 -0.111414
31 VT -0.494894 -0.494894 246.0 264515.0 -0.494894 -0.494894 -0.494894 -0.494894
32 WI 0.034526 0.034526 72.0 2627090.0 0.034526 0.034526 0.034526 0.034526
33 WY -0.648114 -0.648114 23.0 174352.0 -0.648114 -0.648114 -0.648114 -0.648114
unit_data
postal_code geographic_unit_fips pred_margin reporting lower_0.7_margin upper_0.7_margin lower_0.9_margin upper_0.9_margin results_margin pred_turnout
0 AL 01001 -9852.0 1 -9852.0 -9852.0 -9852.0 -9852.0 -9852.0 16864.0
1 AL 01003 -48224.0 1 -48224.0 -48224.0 -48224.0 -48224.0 -48224.0 68660.0
2 AL 01005 -1336.0 1 -1336.0 -1336.0 -1336.0 -1336.0 -1336.0 6416.0
3 AL 01007 -3750.0 1 -3750.0 -3750.0 -3750.0 -3750.0 -3750.0 5610.0
4 AL 01009 -13945.0 1 -13945.0 -13945.0 -13945.0 -13945.0 -13945.0 15797.0
... ... ... ... ... ... ... ... ... ... ...
2077 WY 56037 -6956.0 1 -6956.0 -6956.0 -6956.0 -6956.0 -6956.0 10698.0
2078 WY 56039 -17.0 1 -17.0 -17.0 -17.0 -17.0 -17.0 9869.0
2079 WY 56041 -4469.0 1 -4469.0 -4469.0 -4469.0 -4469.0 -4469.0 5977.0
2080 WY 56043 -2198.0 1 -2198.0 -2198.0 -2198.0 -2198.0 -2198.0 2732.0
2081 WY 56045 -1855.0 1 -1855.0 -1855.0 -1855.0 -1855.0 -1855.0 2211.0
[3125 rows x 10 columns]
nat_sum_data
estimand agg_pred agg_lower agg_upper
0 margin 17.0 17.0 17.0
Is this ok? 🤔
yes, I am an absolute idiot
yes, I am an absolute idiot
No you're not it's ok! 😂 🎉 ❤️
Description
Hi! The changes in this PR:
pred_turnout
is in the unit predictions/reportingModelResults
;pred_turnout
per aggregate (e.g. "district") in the predictions;Please let me know what you think and if this is what you're looking for 😬
Jira Ticket
ELEX-3468
Test Steps
tox
and anelexmodel
command with--save_output results
such as:Confirm in the s3 bucket under
unit_data/
and each aggregate (exceptnat_sum_data/
) thatpred_turnout
now appears in every CSV 🎉