I trained the model with a custom dataset and got the checkpoint files. I froze the model using this script
import tensorflow as tf
def freeze_graph(model_dir, output_node_names, frozen_graph_name):
if not tf.gfile.Exists(model_dir):
raise AssertionError(
"Export directory doesn't exists. Please specify an export "
"directory: %s" % model_dir)
if not output_node_names:
print("You need to supply the name of a node to --output_node_names.")
return -1
# We retrieve our checkpoint fullpath
checkpoint = tf.train.get_checkpoint_state(model_dir)
input_checkpoint = checkpoint.model_checkpoint_path
# We precise the file fullname of our freezed graph
absolute_model_dir = "/".join(input_checkpoint.split('/')[:-1])
output_graph = absolute_model_dir + "/" + frozen_graph_name + ".pb"
# We clear devices to allow TensorFlow to control on which device it will load operations
clear_devices = True
# We start a session using a temporary fresh Graph
with tf.Session(graph=tf.Graph()) as sess:
# We import the meta graph in the current default Graph
saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices)
# We restore the weights
saver.restore(sess, input_checkpoint)
gd = sess.graph.as_graph_def()
# We use a built-in TF helper to export variables to constants
output_graph_def = tf.graph_util.convert_variables_to_constants(
sess, # The session is used to retrieve the weights
gd, # The graph_def is used to retrieve the nodes
output_node_names.split(",") # The output node names are used to select the usefull nodes
)
# Finally we serialize and dump the output graph to the filesystem
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node))
return output_graph_def
freeze_graph('./checkpoint','SparseToDense','ocr.pb')
But when I'm loading the graph from the protobuf file, I'm getting this error:
ValueError: Input 0 of node import/cnn/unit-4/bn4/BatchNorm/AssignMovingAvg/cnn/unit-4/bn4/BatchNorm/moving_mean/AssignAdd was passed float from import/cnn/unit-4/bn4/BatchNorm/cnn/unit-4/bn4/BatchNorm/moving_mean/local_step:0 incompatible with expected float_ref.
I know this is a little off topic but any help is appreciated.
I trained the model with a custom dataset and got the checkpoint files. I froze the model using this script
But when I'm loading the graph from the protobuf file, I'm getting this error:
ValueError: Input 0 of node import/cnn/unit-4/bn4/BatchNorm/AssignMovingAvg/cnn/unit-4/bn4/BatchNorm/moving_mean/AssignAdd was passed float from import/cnn/unit-4/bn4/BatchNorm/cnn/unit-4/bn4/BatchNorm/moving_mean/local_step:0 incompatible with expected float_ref.
I know this is a little off topic but any help is appreciated.