weidler / RLaSpa

Reinforcement Learning in Latent Space
MIT License
5 stars 1 forks source link

Updated the dqn policies #45

Closed adrigrillo closed 5 years ago

adrigrillo commented 5 years ago

Changes in the dqn agents:

An example of how to instantiate an agent:

memory_delay = 5000
init_eps = 1.0
memory_eps = 0.8
min_eps = 0.01
eps_decay = 500000
linear = LinearSchedule(schedule_timesteps=memory_delay, initial_p=init_eps, final_p=memory_eps)
exponential = ExponentialSchedule(initial_p=memory_eps, min_p=min_eps, decay=eps_decay)
policy = PrioritizedDoubleDeepQNetwork(4, env[0].action_space.n, eps_calculator=linear,
                                       memory_eps_calculator=exponential, memory_delay=memory_delay)