weiliu89 / caffe

Caffe: a fast open framework for deep learning.
http://caffe.berkeleyvision.org/
Other
4.77k stars 1.68k forks source link

traing on Imagenet dataset with Check failed: data_ error #255

Open lishangyu opened 8 years ago

lishangyu commented 8 years ago

I want to train SSD net on ILSVRC2014_devkit dataset. I have already create lmdb files like VOC0712,and I change the num classes to 201 (200+1). I thought every thing is OK, BUT when I begin to train SSD on Imagenet data. I met this error, could anybody give me some advise? I1103 19:10:10.231252 11334 layer_factory.hpp:77] Creating layer data I1103 19:10:10.231623 11334 net.cpp:100] Creating Layer data I1103 19:10:10.231634 11334 net.cpp:408] data -> data I1103 19:10:10.231657 11334 net.cpp:408] data -> label I1103 19:10:10.231673 11334 data_transformer.cpp:28] Loading mean file from: examples/ILSVRC2014/mean.binaryproto I1103 19:10:10.232180 11343 db_lmdb.cpp:35] Opened lmdb examples/ILSVRC2014/ILSVRC2014_trainval_lmdb

F1103 19:10:10.262428 11334 blob.cpp:115] Check failed: data_

Check failure stack trace: @ 0x7ff8c2b6d5cd google::LogMessage::Fail() @ 0x7ff8c2b6f433 google::LogMessage::SendToLog() @ 0x7ff8c2b6d15b google::LogMessage::Flush() @ 0x7ff8c2b6fe1e google::LogMessageFatal::~LogMessageFatal() @ 0x7ff8c33632fb caffe::Blob<>::mutable_cpu_data() @ 0x7ff8c337002b caffe::Blob<>::FromProto() @ 0x7ff8c3399179 caffe::DataTransformer<>::DataTransformer() @ 0x7ff8c32ca3c9 caffe::BaseDataLayer<>::LayerSetUp() @ 0x7ff8c32ca503 caffe::BasePrefetchingDataLayer<>::LayerSetUp() @ 0x7ff8c334d257 caffe::Net<>::Init() @ 0x7ff8c334eae1 caffe::Net<>::Net() @ 0x7ff8c3357d8a caffe::Solver<>::InitTrainNet() @ 0x7ff8c3359197 caffe::Solver<>::Init() @ 0x7ff8c335953a caffe::Solver<>::Solver() @ 0x7ff8c3381453 caffe::Creator_SGDSolver<>() @ 0x40c21a train() @ 0x4088e8 main @ 0x7ff8c1080830 __libc_start_main @ 0x4091b9 _start @ (nil) (unknown) Aborted (core dumped)

and my net is I1103 19:10:10.007732 11334 caffe.cpp:217] Using GPUs 0 I1103 19:10:10.021906 11334 caffe.cpp:222] GPU 0: GeForce GTX 1070 I1103 19:10:10.229830 11334 solver.cpp:51] Initializing solver from parameters: train_net: "models/VGGNet/Imagenet/SSD_Imagenet300x300/train.prototxt" test_net: "models/VGGNet/Imagenet/SSD_Imagenet300x300/test.prototxt" test_iter: 4952 test_interval: 10000 base_lr: 0.001 display: 10 max_iter: 60000 lr_policy: "step" gamma: 0.1 momentum: 0.9 weight_decay: 0.0005 stepsize: 40000 snapshot: 40000 snapshot_prefix: "models/VGGNet/Imagenet/SSD_Imagenet300x300/VGG_Imagenet_SSD_Imagenet300x300" solver_mode: GPU device_id: 0 debug_info: false train_state { level: 0 stage: "" } snapshot_after_train: true test_initialization: false average_loss: 10 iter_size: 1 type: "SGD" eval_type: "detection" ap_version: "11point" I1103 19:10:10.229925 11334 solver.cpp:84] Creating training net from train_net file: models/VGGNet/Imagenet/SSD_Imagenet300x300/train.prototxt I1103 19:10:10.230952 11334 net.cpp:58] Initializing net from parameters: name: "VGG_Imagenet_SSD_Imagenet300x300_train" state { phase: TRAIN level: 0 stage: "" } layer { name: "data" type: "AnnotatedData" top: "data" top: "label" include { phase: TRAIN } transform_param { mirror: true mean_file: "examples/ILSVRC2014/mean.binaryproto" force_color: true resize_param { prob: 1 resize_mode: WARP height: 300 width: 300 interp_mode: LINEAR interp_mode: AREA interp_mode: NEAREST interp_mode: CUBIC interp_mode: LANCZOS4 } emit_constraint { emit_type: CENTER } } data_param { source: "examples/ILSVRC2014/ILSVRC2014_trainval_lmdb" batch_size: 32 backend: LMDB } annotated_data_param { batch_sampler { max_sample: 1 max_trials: 1 } batch_sampler { sampler { min_scale: 0.3 max_scale: 1 min_aspect_ratio: 0.5 max_aspect_ratio: 2 } sample_constraint { min_jaccard_overlap: 0.1 } max_sample: 1 max_trials: 50 } batch_sampler { sampler { min_scale: 0.3 max_scale: 1 min_aspect_ratio: 0.5 max_aspect_ratio: 2 } sample_constraint { min_jaccard_overlap: 0.3 } max_sample: 1 max_trials: 50 } batch_sampler { sampler { min_scale: 0.3 max_scale: 1 min_aspect_ratio: 0.5 max_aspect_ratio: 2 } sample_constraint { min_jaccard_overlap: 0.5 } max_sample: 1 max_trials: 50 } batch_sampler { sampler { min_scale: 0.3 max_scale: 1 min_aspect_ratio: 0.5 max_aspect_ratio: 2 } sample_constraint { min_jaccard_overlap: 0.7 } max_sample: 1 max_trials: 50 } batch_sampler { sampler { min_scale: 0.3 max_scale: 1 min_aspect_ratio: 0.5 max_aspect_ratio: 2 } sample_constraint { min_jaccard_overlap: 0.9 } max_sample: 1 max_trials: 50 } batch_sampler { sampler { min_scale: 0.3 max_scale: 1 min_aspect_ratio: 0.5 max_aspect_ratio: 2 } sample_constraint { max_jaccard_overlap: 1 } max_sample: 1 max_trials: 50 } label_map_file: "data/ILSVRC2014/labelmap_ilsvrc_det.prototxt" } } layer { name: "conv1_1" type: "Convolution" bottom: "data" top: "conv1_1" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1_1" type: "ReLU" bottom: "conv1_1" top: "conv1_1" } layer { name: "conv1_2" type: "Convolution" bottom: "conv1_1" top: "conv1_2" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1_2" type: "ReLU" bottom: "conv1_2" top: "conv1_2" } layer { name: "pool1" type: "Pooling" bottom: "conv1_2" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv2_1" type: "Convolution" bottom: "pool1" top: "conv2_1" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu2_1" type: "ReLU" bottom: "conv2_1" top: "conv2_1" } layer { name: "conv2_2" type: "Convolution" bottom: "conv2_1" top: "conv2_2" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu2_2" type: "ReLU" bottom: "conv2_2" top: "conv2_2" } layer { name: "pool2" type: "Pooling" bottom: "conv2_2" top: "pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv3_1" type: "Convolution" bottom: "pool2" top: "conv3_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3_1" type: "ReLU" bottom: "conv3_1" top: "conv3_1" } layer { name: "conv3_2" type: "Convolution" bottom: "conv3_1" top: "conv3_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3_2" type: "ReLU" bottom: "conv3_2" top: "conv3_2" } layer { name: "conv3_3" type: "Convolution" bottom: "conv3_2" top: "conv3_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3_3" type: "ReLU" bottom: "conv3_3" top: "conv3_3" } layer { name: "pool3" type: "Pooling" bottom: "conv3_3" top: "pool3" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv4_1" type: "Convolution" bottom: "pool3" top: "conv4_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu4_1" type: "ReLU" bottom: "conv4_1" top: "conv4_1" } layer { name: "conv4_2" type: "Convolution" bottom: "conv4_1" top: "conv4_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu4_2" type: "ReLU" bottom: "conv4_2" top: "conv4_2" } layer { name: "conv4_3" type: "Convolution" bottom: "conv4_2" top: "conv4_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu4_3" type: "ReLU" bottom: "conv4_3" top: "conv4_3" } layer { name: "pool4" type: "Pooling" bottom: "conv4_3" top: "pool4" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv5_1" type: "Convolution" bottom: "pool4" top: "conv5_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu5_1" type: "ReLU" bottom: "conv5_1" top: "conv5_1" } layer { name: "conv5_2" type: "Convolution" bottom: "conv5_1" top: "conv5_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu5_2" type: "ReLU" bottom: "conv5_2" top: "conv5_2" } layer { name: "conv5_3" type: "Convolution" bottom: "conv5_2" top: "conv5_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu5_3" type: "ReLU" bottom: "conv5_3" top: "conv5_3" } layer { name: "pool5" type: "Pooling" bottom: "conv5_3" top: "pool5" pooling_param { pool: MAX kernel_size: 3 stride: 1 pad: 1 } } layer { name: "fc6" type: "Convolution" bottom: "pool5" top: "fc6" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 1024 pad: 6 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } dilation: 6 } } layer { name: "relu6" type: "ReLU" bottom: "fc6" top: "fc6" } layer { name: "fc7" type: "Convolution" bottom: "fc6" top: "fc7" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 1024 kernel_size: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu7" type: "ReLU" bottom: "fc7" top: "fc7" } layer { name: "conv6_1" type: "Convolution" bottom: "fc7" top: "conv6_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv6_1_relu" type: "ReLU" bottom: "conv6_1" top: "conv6_1" } layer { name: "conv6_2" type: "Convolution" bottom: "conv6_1" top: "conv6_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv6_2_relu" type: "ReLU" bottom: "conv6_2" top: "conv6_2" } layer { name: "conv7_1" type: "Convolution" bottom: "conv6_2" top: "conv7_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv7_1_relu" type: "ReLU" bottom: "conv7_1" top: "conv7_1" } layer { name: "conv7_2" type: "Convolution" bottom: "conv7_1" top: "conv7_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv7_2_relu" type: "ReLU" bottom: "conv7_2" top: "conv7_2" } layer { name: "conv8_1" type: "Convolution" bottom: "conv7_2" top: "conv8_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv8_1_relu" type: "ReLU" bottom: "conv8_1" top: "conv8_1" } layer { name: "conv8_2" type: "Convolution" bottom: "conv8_1" top: "conv8_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv8_2_relu" type: "ReLU" bottom: "conv8_2" top: "conv8_2" } layer { name: "pool6" type: "Pooling" bottom: "conv8_2" top: "pool6" pooling_param { pool: AVE global_pooling: true } } layer { name: "conv4_3_norm" type: "Normalize" bottom: "conv4_3" top: "conv4_3_norm" norm_param { across_spatial: false scale_filler { type: "constant" value: 20 } channel_shared: false } } layer { name: "conv4_3_norm_mbox_loc" type: "Convolution" bottom: "conv4_3_norm" top: "conv4_3_norm_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 12 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv4_3_norm_mbox_loc_perm" type: "Permute" bottom: "conv4_3_norm_mbox_loc" top: "conv4_3_norm_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv4_3_norm_mbox_loc_flat" type: "Flatten" bottom: "conv4_3_norm_mbox_loc_perm" top: "conv4_3_norm_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv4_3_norm_mbox_conf" type: "Convolution" bottom: "conv4_3_norm" top: "conv4_3_norm_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 603 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv4_3_norm_mbox_conf_perm" type: "Permute" bottom: "conv4_3_norm_mbox_conf" top: "conv4_3_norm_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv4_3_norm_mbox_conf_flat" type: "Flatten" bottom: "conv4_3_norm_mbox_conf_perm" top: "conv4_3_norm_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv4_3_norm_mbox_priorbox" type: "PriorBox" bottom: "conv4_3_norm" bottom: "data" top: "conv4_3_norm_mbox_priorbox" prior_box_param { min_size: 30 aspect_ratio: 2 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "fc7_mbox_loc" type: "Convolution" bottom: "fc7" top: "fc7_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "fc7_mbox_loc_perm" type: "Permute" bottom: "fc7_mbox_loc" top: "fc7_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "fc7_mbox_loc_flat" type: "Flatten" bottom: "fc7_mbox_loc_perm" top: "fc7_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "fc7_mbox_conf" type: "Convolution" bottom: "fc7" top: "fc7_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 1206 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "fc7_mbox_conf_perm" type: "Permute" bottom: "fc7_mbox_conf" top: "fc7_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "fc7_mbox_conf_flat" type: "Flatten" bottom: "fc7_mbox_conf_perm" top: "fc7_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "fc7_mbox_priorbox" type: "PriorBox" bottom: "fc7" bottom: "data" top: "fc7_mbox_priorbox" prior_box_param { min_size: 60 max_size: 114 aspect_ratio: 2 aspect_ratio: 3 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "conv6_2_mbox_loc" type: "Convolution" bottom: "conv6_2" top: "conv6_2_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv6_2_mbox_loc_perm" type: "Permute" bottom: "conv6_2_mbox_loc" top: "conv6_2_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv6_2_mbox_loc_flat" type: "Flatten" bottom: "conv6_2_mbox_loc_perm" top: "conv6_2_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv6_2_mbox_conf" type: "Convolution" bottom: "conv6_2" top: "conv6_2_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 1206 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv6_2_mbox_conf_perm" type: "Permute" bottom: "conv6_2_mbox_conf" top: "conv6_2_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv6_2_mbox_conf_flat" type: "Flatten" bottom: "conv6_2_mbox_conf_perm" top: "conv6_2_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv6_2_mbox_priorbox" type: "PriorBox" bottom: "conv6_2" bottom: "data" top: "conv6_2_mbox_priorbox" prior_box_param { min_size: 114 max_size: 168 aspect_ratio: 2 aspect_ratio: 3 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "conv7_2_mbox_loc" type: "Convolution" bottom: "conv7_2" top: "conv7_2_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv7_2_mbox_loc_perm" type: "Permute" bottom: "conv7_2_mbox_loc" top: "conv7_2_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv7_2_mbox_loc_flat" type: "Flatten" bottom: "conv7_2_mbox_loc_perm" top: "conv7_2_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv7_2_mbox_conf" type: "Convolution" bottom: "conv7_2" top: "conv7_2_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 1206 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv7_2_mbox_conf_perm" type: "Permute" bottom: "conv7_2_mbox_conf" top: "conv7_2_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv7_2_mbox_conf_flat" type: "Flatten" bottom: "conv7_2_mbox_conf_perm" top: "conv7_2_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv7_2_mbox_priorbox" type: "PriorBox" bottom: "conv7_2" bottom: "data" top: "conv7_2_mbox_priorbox" prior_box_param { min_size: 168 max_size: 222 aspect_ratio: 2 aspect_ratio: 3 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "conv8_2_mbox_loc" type: "Convolution" bottom: "conv8_2" top: "conv8_2_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv8_2_mbox_loc_perm" type: "Permute" bottom: "conv8_2_mbox_loc" top: "conv8_2_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv8_2_mbox_loc_flat" type: "Flatten" bottom: "conv8_2_mbox_loc_perm" top: "conv8_2_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv8_2_mbox_conf" type: "Convolution" bottom: "conv8_2" top: "conv8_2_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 1206 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv8_2_mbox_conf_perm" type: "Permute" bottom: "conv8_2_mbox_conf" top: "conv8_2_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv8_2_mbox_conf_flat" type: "Flatten" bottom: "conv8_2_mbox_conf_perm" top: "conv8_2_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv8_2_mbox_priorbox" type: "PriorBox" bottom: "conv8_2" bottom: "data" top: "conv8_2_mbox_priorbox" prior_box_param { min_size: 222 max_size: 276 aspect_ratio: 2 aspect_ratio: 3 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "pool6_mbox_loc" type: "Convolution" bottom: "pool6" top: "pool6_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "pool6_mbox_loc_perm" type: "Permute" bottom: "pool6_mbox_loc" top: "pool6_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "pool6_mbox_loc_flat" type: "Flatten" bottom: "pool6_mbox_loc_perm" top: "pool6_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "pool6_mbox_conf" type: "Convolution" bottom: "pool6" top: "pool6_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 1206 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "pool6_mbox_conf_perm" type: "Permute" bottom: "pool6_mbox_conf" top: "pool6_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "pool6_mbox_conf_flat" type: "Flatten" bottom: "pool6_mbox_conf_perm" top: "pool6_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "pool6_mbox_priorbox" type: "PriorBox" bottom: "pool6" bottom: "data" top: "pool6_mbox_priorbox" prior_box_param { min_size: 276 max_size: 330 aspect_ratio: 2 aspect_ratio: 3 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "mbox_loc" type: "Concat" bottom: "conv4_3_norm_mbox_loc_flat" bottom: "fc7_mbox_loc_flat" bottom: "conv6_2_mbox_loc_flat" bottom: "conv7_2_mbox_loc_flat" bottom: "conv8_2_mbox_loc_flat" bottom: "pool6_mbox_loc_flat" top: "mbox_loc" concat_param { axis: 1 } } layer { name: "mbox_conf" type: "Concat" bottom: "conv4_3_norm_mbox_conf_flat" bottom: "fc7_mbox_conf_flat" bottom: "conv6_2_mbox_conf_flat" bottom: "conv7_2_mbox_conf_flat" bottom: "conv8_2_mbox_conf_flat" bottom: "pool6_mbox_conf_flat" top: "mbox_conf" concat_param { axis: 1 } } layer { name: "mbox_priorbox" type: "Concat" bottom: "conv4_3_norm_mbox_priorbox" bottom: "fc7_mbox_priorbox" bottom: "conv6_2_mbox_priorbox" bottom: "conv7_2_mbox_priorbox" bottom: "conv8_2_mbox_priorbox" bottom: "pool6_mbox_priorbox" top: "mbox_priorbox" concat_param { axis: 2 } } layer { name: "mbox_loss" type: "MultiBoxLoss" bottom: "mbox_loc" bottom: "mbox_conf" bottom: "mbox_priorbox" bottom: "label" top: "mbox_loss" include { phase: TRAIN } propagate_down: true propagate_down: true propagate_down: false propagate_down: false loss_param { normalization: VALID } multibox_loss_param { loc_loss_type: SMOOTH_L1 conf_loss_type: SOFTMAX loc_weight: 1 num_classes: 201 share_location: true match_type: PER_PREDICTION overlap_threshold: 0.5 use_prior_for_matching: true background_label_id: 0 use_difficult_gt: true do_neg_mining: true neg_pos_ratio: 3 neg_overlap: 0.5 code_type: CENTER_SIZE } }

weiliu89 commented 8 years ago

From the error message, it looks like your examples/ILSVRC2014/mean.binaryproto has problem. Make sure the file is correct. Besides, why not using the mean values used in PASCAL or COCO?

lishangyu commented 8 years ago

@weiliu89 THx your answer! Can I use the mean values used in PASCAL or COCO? I think i should create my own mean file when I used a new database (Imagenet 2014).

weiliu89 commented 8 years ago

I think the exact mean value doesn't matter as long as it is around 128. If your dataset really has different RGB value. You could probably just compute three mean values (R, G, B), instead of a mean file. It is more flexible than a mean file.

lishangyu commented 8 years ago

@weiliu89 I will try it. I‘m appreciate about it.