Open douhaohaode opened 8 months ago
可能是你的视频太宽了吧。 你可以适当减小一下512的值,比如448或者384试试 要么就是减少batch size https://github.com/williamyang1991/FRESCO/blob/9fe1be71b6c21890b5bc92659026f9586440266e/run_fresco.py#L170
我的也不行
https://github.com/williamyang1991/FRESCO/issues/28#issuecomment-2016712263
我在这个issue里写了,512x512的 24G GPU是可以跑的 如果你的视频是16:9的,则输入就会被放缩到512x896,像素变为1.7倍,中间在计算GRAM矩阵的时候,显存占用会增加1.75x1.75=3倍, 于是就爆显存了。 解决办法就是,把你的视频裁减得高一点,或者降低视频分辨率(放缩到不到512),或者使用小一点的batch size
我在这个issue里写了,512x512的 24G GPU是可以跑的 如果你的视频是16:9的,则输入就会被放缩到512x896,像素变为1.7倍,中间在计算GRAM矩阵的时候,显存占用会增加1.75x1.75=3倍, 于是就爆显存了。 解决办法就是,把你的视频裁减得高一点,或者降低视频分辨率(放缩到不到512),或者使用小一点的batch size
好的 🫡
Traceback (most recent call last): File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\gradio\queueing.py", line 388, in call_prediction output = await route_utils.call_process_api( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\gradio\route_utils.py", line 219, in call_process_api output = await app.get_blocks().process_api( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\gradio\blocks.py", line 1437, in process_api result = await self.call_function( ^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\gradio\blocks.py", line 1109, in call_function prediction = await anyio.to_thread.run_sync( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\anyio\to_thread.py", line 33, in run_sync return await get_asynclib().run_sync_in_worker_thread( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\anyio_backends_asyncio.py", line 877, in run_sync_in_worker_thread return await future ^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\anyio_backends_asyncio.py", line 807, in run result = context.run(func, args) ^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\gradio\utils.py", line 650, in wrapper response = f(args, kwargs) ^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\torch\utils_contextlib.py", line 115, in decorate_context return func(*args, kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\webUI.py", line 159, in process keypath = process1(args) ^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\torch\utils_contextlib.py", line 115, in decorate_context return func(args, kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\webUI.py", line 280, in process1 latents = inference(global_state.pipe, global_state.controlnet, global_state.frescoProc, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\torch\utils_contextlib.py", line 115, in decorate_context return func(*args, kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\src\pipe_FRESCO.py", line 201, in inference noise_pred = pipe.unet( ^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\src\diffusion_hacked.py", line 787, in forward sample = upsample_block( ^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, *kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\src\free_lunch_utils.py", line 346, in forward hidden_states = attn( ^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\diffusers\models\transformer_2d.py", line 292, in forward hidden_states = block( ^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, *kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\diffusers\models\attention.py", line 155, in forward attn_output = self.attn1( ^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\venv\Lib\site-packages\diffusers\models\attention_processor.py", line 322, in forward return self.processor( ^^^^^^^^^^^^^^^ File "D:\python_project\Rerender_A_Video\src\diffusion_hacked.py", line 281, in call query = F.scaled_dot_product_attention( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 7.66 GiB (GPU 0; 23.99 GiB total capacity; 15.29 GiB already allocated; 2.85 GiB free; 17.22 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF