Closed EdenGabriel closed 1 year ago
oh, I discovered that when I tried using VGG (obtained from UMT) features, the model also failed to learn effectively. It only worked when using SlowFast + Clip features.
the configuration as follows:
dset_name=charades
ctx_mode=video_tef
v_feat_types=c3d
t_feat_type=clip
results_root=results
exp_id=exp
if [[ ${v_feat_types} == *"c3d"* ]]; then
v_feat_dirs+=(${feat_root}/charades_c3d_raw)
(( v_feat_dim += 1024 ))
fi
if [[ ${v_feat_types} == *"rgb"* ]]; then
v_feat_dirs+=(${feat_root}/charades_rgb_opt/rgb_features)
(( v_feat_dim += 4096 ))
fi
bsz=32
n_epoch=100
lr_drop=40
lr=0.0002
lw_saliency=4.0
max_v_l=-1
max_q_l=32
clip_length=1
PYTHONPATH=$PYTHONPATH:. python qd_detr/train.py \
--dset_name ${dset_name} \
--ctx_mode ${ctx_mode} \
--train_path ${train_path} \
--eval_path ${eval_path} \
--eval_split_name ${eval_split_name} \
--v_feat_dirs ${v_feat_dirs[@]} \
--v_feat_dim ${v_feat_dim} \
--t_feat_dir ${t_feat_dir} \
--t_feat_dim ${t_feat_dim} \
--bsz ${bsz} \
--n_epoch ${n_epoch} \
--lr_drop ${lr_drop} \
--lr ${lr} \
--lw_saliency ${lw_saliency} \
--max_v_l ${max_v_l} \
--max_q_l ${max_q_l} \
--clip_length ${clip_length} \
--results_root ${results_root}_charades \
--exp_id ${exp_id} \
${@:1}
Sorry for bothering you. I have resolved the issue. I overlooked the fact that different features corresponded to different clip lengths.
Great! Thanks.
Excuse me, I couldn't reproduce the results reported in the paper on the Charades dataset, even after setting the parameters according to the issue #1 . The C3D features used are obtained from https://drive.google.com/file/d/1CcMwae55Tuve_Ksrp5kONycyR1bVcX8D/view. Furthermore, for the slowfast&clip features, i have modified the code as follows:
and in the eval.py, i modified the "mk_gt_scores" function:
Actually, I found that if I don't modify the "mk_gt_scores" code and simply comment out line
pred_saliency_scores=saliency_scores[idx]
in the inference.py, it produces the same result.so, can you help me to reproduce the results reported in the paper on the Charades dataset, thanks.