Hello,
Thanks for the great work.I would like to ask what this parameter"use_tef" represents. Why concat "tef" with "model_inputs["video_feat"] " if "use_tef" is set True. The code on line 97 of file "QD-DETR/qd_detr/start_end_dataset.py" shows below:
if self.use_tef:
tef_st = torch.arange(0, ctx_l, 1.0) / ctx_l
tef_ed = tef_st + 1.0 / ctx_l
tef = torch.stack([tef_st, tef_ed], dim=1) # (Lv, 2)
if self.use_video:
model_inputs["video_feat"] = torch.cat(
[model_inputs["video_feat"], tef], dim=1) # (Lv, Dv+2)
else:
model_inputs["video_feat"] = tef
best,
Eason
Hello, Thanks for the great work.I would like to ask what this parameter"use_tef" represents. Why concat "tef" with "model_inputs["video_feat"] " if "use_tef" is set True. The code on line 97 of file "QD-DETR/qd_detr/start_end_dataset.py" shows below: if self.use_tef: tef_st = torch.arange(0, ctx_l, 1.0) / ctx_l tef_ed = tef_st + 1.0 / ctx_l tef = torch.stack([tef_st, tef_ed], dim=1) # (Lv, 2) if self.use_video: model_inputs["video_feat"] = torch.cat( [model_inputs["video_feat"], tef], dim=1) # (Lv, Dv+2) else: model_inputs["video_feat"] = tef best, Eason