I'm running cosine similarity using the coop package on a sparse matrix that is 4343 rows by 300 columns:
a <- read.csv("https://gist.githubusercontent.com/chasemc/713b8b0b7a67129d7a8084e2aededec3/raw/69f84bba46e479204fc27402a492a537ee10e86d/sparseMatrix.csv")
b <- as.matrix(a)
b <- Matrix::Matrix(b)
coop::cosine(b)
R crashes if 130 or more columns were being provided to coop::cosine(), but if converted to a regular matrix it works.
R version 3.5.3 (2019-03-11)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] compiler_3.5.3 tools_3.5.3 yaml_2.2.0
R Version:
_
platform x86_64-w64-mingw32
arch x86_64
os mingw32
system x86_64, mingw32
status
major 3
minor 5.3
year 2019
month 03
day 11
svn rev 76217
language R
version.string R version 3.5.3 (2019-03-11)
nickname Great Truth
I'm running cosine similarity using the coop package on a sparse matrix that is 4343 rows by 300 columns:
R crashes if 130 or more columns were being provided to coop::cosine(), but if converted to a regular matrix it works.