xingchenshanyao / NNLearning

这里只是学习深度学习过程中的一些记录
4 stars 0 forks source link

Vit———Vision Transformer图像分类2010 #34

Open xingchenshanyao opened 1 year ago

xingchenshanyao commented 1 year ago

参考来源:

https://blog.csdn.net/qq_37541097/article/details/118242600

论文名称: An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale

xingchenshanyao commented 1 year ago

前言 Transformer最初提出是针对NLP领域的,并且在NLP领域大获成功。这篇论文也是受到其启发,尝试将Transformer应用到CV领域。关于Transformer的部分理论之前的博文中有讲,这里不在赘述。通过这篇文章的实验,给出的最佳模型在ImageNet1K上能够达到88.55%的准确率(先在Google自家的JFT数据集上进行了预训练),说明Transformer在CV领域确实是有效的,而且效果还挺惊人。 1 在这篇文章中,作者主要拿ResNet、ViT(纯Transformer模型)以及Hybrid(卷积和Transformer混合模型)三个模型进行比较,所以本博文除了讲ViT模型外还会简单聊聊Hybrid模型。

xingchenshanyao commented 1 year ago

Vision Transformer模型详解 下图是原论文中给出的关于Vision Transformer(ViT)的模型框架。简单而言,模型由三个模块组成:

Embedding层结构详解 对于标准的Transformer模块,要求输入的是token(向量)序列,即二维矩阵[num_token, token_dim],如下图,token0-9对应的都是向量,以ViT-B/16为例,每个token向量长度为768。 3 对于图像数据而言,其数据格式为[H, W, C]是三维矩阵明显不是Transformer想要的。所以需要先通过一个Embedding层来对数据做个变换。如下图所示,首先将一张图片按给定大小分成一堆Patches。以ViT-B/16为例,将输入图片(224x224)按照16x16大小的Patch进行划分,划分后会得到(224/16)^2=196个Patches。接着通过线性映射将每个Patch映射到一维向量中,以ViT-B/16为例,每个Patche数据shape为[16, 16, 3]通过映射得到一个长度为768的向量(后面都直接称为token)。 [16, 16, 3] -> [768] 在代码实现中,直接通过一个卷积层来实现。 以ViT-B/16为例,直接使用一个卷积核大小为16x16,步距为16,卷积核个数为768的卷积来实现。通过卷积[224, 224, 3] -> [14, 14, 768],然后把H以及W两个维度展平即可[14, 14, 768] -> [196, 768],此时正好变成了一个二维矩阵,正是Transformer想要的。 在输入Transformer Encoder之前注意需要加上[class]token以及Position Embedding。 在原论文中,作者说参考BERT,在刚刚得到的一堆tokens中插入一个专门用于分类的[class]token,这个[class]token是一个可训练的参数,数据格式和其他token一样都是一个向量,以ViT-B/16为例,就是一个长度为768的向量,与之前从图片中生成的tokens拼接在一起,Cat([1, 768], [196, 768]) -> [197, 768]。然后关于Position Embedding就是之前Transformer中讲到的Positional Encoding,这里的Position Embedding采用的是一个可训练的参数(1D Pos. Emb.),是直接叠加在tokens上的(add),所以shape要一样。以ViT-B/16为例,刚刚拼接[class]token后shape是[197, 768],那么这里的Position Embedding的shape也是[197, 768]。 4 对于Position Embedding作者也有做一系列对比试验,在源码中默认使用的是1D Pos. Emb.,对比不使用Position Embedding准确率提升了大概3个点,和2D Pos. Emb.比起来没太大差别。 5

Transformer Encoder详解 Transformer Encoder其实就是重复堆叠Encoder Block L次,下图是我自己绘制的Encoder Block,主要由以下几部分组成:

MLP Head详解 上面通过Transformer Encoder后输出的shape和输入的shape是保持不变的,以ViT-B/16为例,输入的是[197, 768]输出的还是[197, 768]。注意,在Transformer Encoder后其实还有一个Layer Norm没有画出来,后面有我自己画的ViT的模型可以看到详细结构。这里我们只是需要分类的信息,所以我们只需要提取出[class]token生成的对应结果就行,即[197, 768]中抽取出[class]token对应的[1, 768]。接着我们通过MLP Head得到我们最终的分类结果。MLP Head原论文中说在训练ImageNet21K时是由Linear+tanh激活函数+Linear组成。但是迁移到ImageNet1K上或者你自己的数据上时,只用一个Linear即可。 7

自己绘制的Vision Transformer网络结构 为了方便大家理解,我(原博主)自己根据源代码画了张更详细的图(以ViT-B/16为例): 8

xingchenshanyao commented 1 year ago

Hybrid模型详解 在论文4.1章节的Model Variants中有比较详细的讲到Hybrid混合模型,就是将传统CNN特征提取和Transformer进行结合。下图绘制的是以ResNet50作为特征提取器的混合模型,但这里的Resnet与之前讲的Resnet有些不同。首先这里的R50的卷积层采用的StdConv2d不是传统的Conv2d,然后将所有的BatchNorm层替换成GroupNorm层。在原Resnet50网络中,stage1重复堆叠3次,stage2重复堆叠4次,stage3重复堆叠6次,stage4重复堆叠3次,但在这里的R50中,把stage4中的3个Block移至stage3中,所以stage3中共重复堆叠9次。 通过R50 Backbone进行特征提取后,得到的特征矩阵shape是[14, 14, 1024],接着再输入Patch Embedding层,注意Patch Embedding中卷积层Conv2d的kernel_size和stride都变成了1,只是用来调整channel。后面的部分和前面ViT中讲的完全一样,就不在赘述。 9 下表是论文用来对比ViT,Resnet(和刚刚讲的一样,使用的卷积层和Norm层都进行了修改)以及Hybrid模型的效果。通过对比发现,在训练epoch较少时Hybrid优于ViT,但当epoch增大后ViT优于Hybrid。 10

xingchenshanyao commented 1 year ago

ViT模型搭建参数 在论文的Table1中有给出三个模型(Base/ Large/ Huge)的参数,在源码中除了有Patch Size为16x16的外还有32x32的。其中的Layers就是Transformer Encoder中重复堆叠Encoder Block的次数,Hidden Size就是对应通过Embedding层后每个token的dim(向量的长度),MLP size是Transformer Encoder中MLP Block第一个全连接的节点个数(是Hidden Size的四倍),Heads代表Transformer中Multi-Head Attention的heads数。 11