Open BBC-Esq opened 1 year ago
It works just fine for me. For GPU, you need to seek other solutions (https://discuss.pytorch.org/t/does-dynamic-quantization-support-gpu/119231).
It works just fine for me. For GPU, you need to seek other solutions (https://discuss.pytorch.org/t/does-dynamic-quantization-support-gpu/119231).
Do you have a sample script or series of commands that you used? I've tried verbatim.
I just used the code from the quantization section in the readme of this repo.
I just used the code from the quantization section in the readme of this repo.
Thanks. I can't get it to work. If I try to get the error messages or log messages, would you be willing to help me just a little bit?
I figured out how to dynamically quantize the instructor-xl model, but at the point that it's supposed to create the embeddings, i want it to use gpu acceleration (cuda) just like it does when I use the float32 version of the model. Is that possible? If I understand the comments above, it's not? What about quantizing the model beforehand NOT using the "dynamic" method? I've been struggling with this for months so any help would be much appreciated. The link above is to a discussion back in 2021 and "seek other solutions" doesn't point me in the right direction so...I'm looking at bitsandbytes but couldn't find a solution either... Here is the portion of the script I'm trying to use:
if "instructor" in EMBEDDING_MODEL_NAME:
# Create the instructor embeddings object
embeddings = HuggingFaceInstructEmbeddings(
model_name=EMBEDDING_MODEL_NAME,
model_kwargs={"device": COMPUTE_DEVICE},
query_instruction="Represent the document for retrieval."
)
# Quantize the instructor model on the CPU
embeddings.client = quantize_dynamic(embeddings.client, dtype=torch.qint8)
# Move the quantized model to the GPU
embeddings.client = embeddings.client.to('cuda')
elif "bge" in EMBEDDING_MODEL_NAME and "large-en-v1.5" not in EMBEDDING_MODEL_NAME:
embeddings = HuggingFaceBgeEmbeddings(
model_name=EMBEDDING_MODEL_NAME,
model_kwargs={"device": COMPUTE_DEVICE},
encode_kwargs={'normalize_embeddings': True}
)
else:
embeddings = HuggingFaceEmbeddings(
model_name=EMBEDDING_MODEL_NAME,
model_kwargs={"device": COMPUTE_DEVICE},
)
Hi, Thanks a lot for your interest in the INSTRUCTOR!
The following seems to work for me:
import torch
from InstructorEmbedding import INSTRUCTOR
from torch.nn import Embedding, Linear
from torch.quantization import quantize_dynamic
from sklearn.metrics.pairwise import cosine_similarity
model = INSTRUCTOR('hkunlp/instructor-large',device='cpu')
qconfig_dict = {Embedding : torch.ao.quantization.qconfig.float_qparams_weight_only_qconfig, Linear: torch.ao.quantization.qconfig.default_dynamic_qconfig}
qmodel = quantize_dynamic(model, qconfig_dict)
sentences_a = [['Represent the Science sentence: ','Parton energy loss in QCD matter'],
['Represent the Financial statement: ','The Federal Reserve on Wednesday raised its benchmark interest rate.']]
sentences_b = [['Represent the Science sentence: ','The Chiral Phase Transition in Dissipative Dynamics'],
['Represent the Financial statement: ','The funds rose less than 0.5 per cent on Friday']]
embeddings_a = qmodel.encode(sentences_a)
embeddings_b = qmodel.encode(sentences_b)
similarities = cosine_similarity(embeddings_a,embeddings_b)
torch.save(qmodel.state_dict(),'state.pt')
Hope this helps!
I get with this script:
[1] 12026 illegal hardware instruction python3
/usr/local/Cellar/python@3.10/3.10.12/Frameworks/Python.framework/Versions/3.10/lib/python3.10/multiprocessing/resource_tracker.py:224: UserWarning: resource_tracker: There appear to be 1 leaked semaphore objects to clean up at shutdown
warnings.warn('resource_tracker: There appear to be %d '
I'm on M1 Mac, sentence_transformers==2.2.2 (also had the problem with the token) #106
Tried every which way to get it to work, just can't get it to work. No other examples on the Internet of it working either.