xuanjihe / speech-emotion-recognition

speech emotion recognition using a convolutional recurrent networks based on IEMOCAP
389 stars 142 forks source link

Incompatible shapes: [654] vs. [436] #28

Closed ramesh720 closed 5 years ago

ramesh720 commented 5 years ago

while running model.py i am getting error InvalidArgumentError (see above for traceback): Incompatible shapes: [654] vs. [436]

and my valid data,valid_label looks good ('valid_label==', (436, 4)) ('valid_data==', (436, 300, 40, 3))

and the network architecture is

('layer1 shape', TensorShape([Dimension(None), Dimension(300), Dimension(40), Dimension(256)])) ('layer 2 shape', TensorShape([Dimension(None), Dimension(300), Dimension(10), Dimension(512)])) (?, 300, 5, 512) ('layer2 shape', TensorShape([Dimension(None), Dimension(300), Dimension(5), Dimension(512)])) ('layer2 shape', TensorShape([Dimension(None), Dimension(200), Dimension(2560)])) ('layer2 shape', TensorShape([Dimension(None), Dimension(2560)])) ('linear1 shape', TensorShape([Dimension(None), Dimension(768)])) ('linear1 shape', TensorShape([Dimension(None), Dimension(768)])) ('linear1 shape', TensorShape([Dimension(None), Dimension(200), Dimension(768)])) ('outputs1 shape', (<tf.Tensor 'LSTM1/fw/fw/transpose:0' shape=(?, 200, 128) dtype=float32>, <tf.Tensor 'ReverseV2:0' shape=(?, 200, 128) dtype=float32>)) ('outputs shape', TensorShape([Dimension(None), Dimension(200), Dimension(256)])) ('outputs shape', TensorShape([Dimension(None), Dimension(200), Dimension(256), Dimension(1)])) ('gru shape', TensorShape([Dimension(None), Dimension(256)])) ('fully1 shape', TensorShape([Dimension(None), Dimension(64)])) ('Ylogits shape', TensorShape([Dimension(None), Dimension(4)]))

i checked and i printed all shapes looking like shapes are good . but getting same error. why i am getting more loggits. many of them getting the same error as i get. can you please check sir. Thanking you

xuanjihe commented 5 years ago

I have uodate the code and you can try again!