Open dbAIStudio opened 2 years ago
On Sat, Jan 15, 2022 at 3:21 PM dbAIStudio @.***> wrote:
I want to do a single image inference to get the result. When num_workers=1, it takes more than 5s on the gpu. I changed it to num_workers=0. The gpu takes more than 1s, and I tested the cpu gpu time. There seems to be no difference, when my torch 1.8, what is the reason for this?
— Reply to this email directly, view it on GitHub https://github.com/xuebinqin/U-2-Net/issues/283, or unsubscribe https://github.com/notifications/unsubscribe-auth/ADSGORMAUI7XZCH7MT3KAWDUWFKDXANCNFSM5MA4CPEA . Triage notifications on the go with GitHub Mobile for iOS https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 or Android https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub.
You are receiving this because you are subscribed to this thread.Message ID: @.***>
-- Xuebin Qin PhD Department of Computing Science University of Alberta, Edmonton, AB, Canada Homepage: https://xuebinqin.github.io/
1.确保您输入的图像是320x320 2.确保您没有考虑图像加载和调整大小的时间 3.多次运行推理并获得平均值,通常像pytorch和tensorflow这样的深度学习框架需要初始化馈送第一张图像时的计算,因此第一张馈送图像的时间成本通常需要更多时间。4. 确保您的代码完全在 GPU 而不是 CPU 上运行。 … On Sat, Jan 15, 2022 at 3:21 PM dbAIStudio @.> wrote: I want to do a single image inference to get the result. When num_workers=1, it takes more than 5s on the gpu. I changed it to num_workers=0. The gpu takes more than 1s, and I tested the cpu gpu time. There seems to be no difference, when my torch 1.8, what is the reason for this? — Reply to this email directly, view it on GitHub <#283>, or unsubscribe https://github.com/notifications/unsubscribe-auth/ADSGORMAUI7XZCH7MT3KAWDUWFKDXANCNFSM5MA4CPEA . Triage notifications on the go with GitHub Mobile for iOS https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 or Android https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub. You are receiving this because you are subscribed to this thread.Message ID: @.> -- Xuebin Qin PhD Department of Computing Science University of Alberta, Edmonton, AB, Canada Homepage: https://xuebinqin.github.io/ 我把初始化模型放到了前面,我想要单张图像进行推理,代码中 if torch.cuda.is_available(): 是进入的,确认时gpu版本的torch 我在下面这段代码中加的时间,dataloader 比较耗时并且d1,d2,d3,d4,d5,d6,d7= net(inputs_test)耗时700ms
--------- 2. dataloader ---------
1. dataloader
test_salobj_dataset = SalObjDataset(img_name_list = img_name_list, lbl_name_list = [], transform=transforms.Compose([RescaleT(320), ToTensorLab(flag=0)]) ) test_salobj_dataloader = DataLoader(test_salobj_dataset, batch_size=1, shuffle=False, num_workers=1)
--------- 4. inference for each image ---------
for i_test, data_test in enumerate(test_salobj_dataloader):
print("inferencing:",img_name_list[i_test].split(os.sep)[-1])
inputs_test = data_test['image']
inputs_test = inputs_test.type(torch.FloatTensor)
if torch.cuda.is_available():
inputs_test = Variable(inputs_test.cuda())
else:
inputs_test = Variable(inputs_test)
d1,d2,d3,d4,d5,d6,d7= net(inputs_test)
1.确保您输入的图像是320x320 2.确保您没有考虑图像加载和调整大小的时间 3.多次运行推理并获得平均值,通常像pytorch和tensorflow这样的深度学习框架需要初始化馈送第一张图像时的计算,因此第一张馈送图像的时间成本通常需要更多时间。4. 确保您的代码完全在 GPU 而不是 CPU 上运行。 … On Sat, Jan 15, 2022 at 3:21 PM dbAIStudio @.> wrote: I want to do a single image inference to get the result. When num_workers=1, it takes more than 5s on the gpu. I changed it to num_workers=0. The gpu takes more than 1s, and I tested the cpu gpu time. There seems to be no difference, when my torch 1.8, what is the reason for this? — Reply to this email directly, view it on GitHub <#283>, or unsubscribe https://github.com/notifications/unsubscribe-auth/ADSGORMAUI7XZCH7MT3KAWDUWFKDXANCNFSM5MA4CPEA . Triage notifications on the go with GitHub Mobile for iOS https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 or Android https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub. You are receiving this because you are subscribed to this thread.Message ID: @.> -- Xuebin Qin PhD Department of Computing Science University of Alberta, Edmonton, AB, Canada Homepage: https://xuebinqin.github.io/
首先感谢您的回复,我上面的情况拿cpu的torch和gpu的torch测试的耗时基本都差不多,但是我看其他人测试的帧率都不会是我这个单张图1s多,因为我想单张图进行推理,测试目录下只放了一张图进行的,我想知道是什么原因,我如果就单张图做模型推理代码应该如何做调整
try to just count the time of this line: d1,d2,d3,d4,d5,d6,d7= net(inputs_test)
On Sat, Jan 15, 2022 at 3:54 PM dbAIStudio @.***> wrote:
1.确保您输入的图像是320x320 2.确保您没有考虑图像加载和调整大小的时间 3.多次运行推理并获得平均值,通常像pytorch和tensorflow这样的深度学习框架需要初始化馈送第一张图像时的计算,因此第一张馈送图像的时间成本通常需要更多时间。4. 确保您的代码完全在 GPU 而不是 CPU 上运行。 … <#m-6488284796971335845> On Sat, Jan 15, 2022 at 3:21 PM dbAIStudio @.> wrote: I want to do a single image inference to get the result. When num_workers=1, it takes more than 5s on the gpu. I changed it to num_workers=0. The gpu takes more than 1s, and I tested the cpu gpu time. There seems to be no difference, when my torch 1.8, what is the reason for this? — Reply to this email directly, view it on GitHub <#283 https://github.com/xuebinqin/U-2-Net/issues/283>, or unsubscribe https://github.com/notifications/unsubscribe-auth/ADSGORMAUI7XZCH7MT3KAWDUWFKDXANCNFSM5MA4CPEA https://github.com/notifications/unsubscribe-auth/ADSGORMAUI7XZCH7MT3KAWDUWFKDXANCNFSM5MA4CPEA . Triage notifications on the go with GitHub Mobile for iOS https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 or Android https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub. You are receiving this because you are subscribed to this thread.Message ID: @.> -- Xuebin Qin PhD Department of Computing Science University of Alberta, Edmonton, AB, Canada Homepage: https://xuebinqin.github.io/ 我把初始化模型放到了前面,我想要单张图像进行推理,代码中 if torch.cuda.is_available(): 是进入的,确认时gpu版本的torch 我在下面这段代码中加的时间,dataloader 比较耗时并且d1,d2,d3,d4,d5,d6,d7= net(inputs_test)耗时700ms
--------- 2. dataloader ---------
1. dataloader
test_salobj_dataset = SalObjDataset(img_name_list = img_name_list,
lbl_name_list = [], transform=transforms.Compose([RescaleT(320), ToTensorLab(flag=0)]) )
test_salobj_dataloader = DataLoader(test_salobj_dataset,
batch_size=1, shuffle=False, num_workers=1)
--------- 4. inference for each image ---------
for i_test, data_test in enumerate(test_salobj_dataloader):
print("inferencing:",img_name_list[i_test].split(os.sep)[-1]) inputs_test = data_test['image'] inputs_test = inputs_test.type(torch.FloatTensor) if torch.cuda.is_available(): inputs_test = Variable(inputs_test.cuda()) else: inputs_test = Variable(inputs_test) d1,d2,d3,d4,d5,d6,d7= net(inputs_test)
— Reply to this email directly, view it on GitHub https://github.com/xuebinqin/U-2-Net/issues/283#issuecomment-1013669125, or unsubscribe https://github.com/notifications/unsubscribe-auth/ADSGORPIONXHZ6U22RA3MY3UWFN77ANCNFSM5MA4CPEA . Triage notifications on the go with GitHub Mobile for iOS https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 or Android https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub.
You are receiving this because you commented.Message ID: @.***>
-- Xuebin Qin PhD Department of Computing Science University of Alberta, Edmonton, AB, Canada Homepage: https://xuebinqin.github.io/
try to just count the time of this line: d1,d2,d3,d4,d5,d6,d7= net(inputstest) … On Sat, Jan 15, 2022 at 3:54 PM dbAIStudio @.***> wrote: 1.确保您输入的图像是320x320 2.确保您没有考虑图像加载和调整大小的时间 3.多次运行推理并获得平均值,通常像pytorch和tensorflow这样的深度学习框架需要初始化馈送第一张图像时的计算,因此第一张馈送图像的时间成本通常需要更多时间。4. 确保您的代码完全在 GPU 而不是 CPU 上运行。 … <#m-6488284796971335845_> On Sat, Jan 15, 2022 at 3:21 PM dbAIStudio @.> wrote: I want to do a single image inference to get the result. When num_workers=1, it takes more than 5s on the gpu. I changed it to num_workers=0. The gpu takes more than 1s, and I tested the cpu gpu time. There seems to be no difference, when my torch 1.8, what is the reason for this? — Reply to this email directly, view it on GitHub <#283 <#283>>, or unsubscribe https://github.com/notifications/unsubscribe-auth/ADSGORMAUI7XZCH7MT3KAWDUWFKDXANCNFSM5MA4CPEA https://github.com/notifications/unsubscribe-auth/ADSGORMAUI7XZCH7MT3KAWDUWFKDXANCNFSM5MA4CPEA . Triage notifications on the go with GitHub Mobile for iOS https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 or Android https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub. You are receiving this because you are subscribed to this thread.Message ID: @.> -- Xuebin Qin PhD Department of Computing Science University of Alberta, Edmonton, AB, Canada Homepage: https://xuebinqin.github.io/ 我把初始化模型放到了前面,我想要单张图像进行推理,代码中 if torch.cuda.is_available(): 是进入的,确认时gpu版本的torch 我在下面这段代码中加的时间,dataloader 比较耗时并且d1,d2,d3,d4,d5,d6,d7= net(inputs_test)耗时700ms --------- 2. dataloader --------- #1. dataloader test_salobj_dataset = SalObjDataset(img_name_list = img_name_list, lbl_name_list = [], transform=transforms.Compose([RescaleT(320), ToTensorLab(flag=0)]) ) test_salobj_dataloader = DataLoader(test_salobj_dataset, batch_size=1, shuffle=False, num_workers=1) # --------- 4. inference for each image --------- for i_test, data_test in enumerate(test_salobj_dataloader): print("inferencing:",img_name_list[i_test].split(os.sep)[-1]) inputs_test = data_test['image'] inputs_test = inputs_test.type(torch.FloatTensor) if torch.cuda.is_available(): inputs_test = Variable(inputs_test.cuda()) else: inputs_test = Variable(inputs_test) d1,d2,d3,d4,d5,d6,d7= net(inputs_test) — Reply to this email directly, view it on GitHub <#283 (comment)>, or unsubscribe https://github.com/notifications/unsubscribe-auth/ADSGORPIONXHZ6U22RA3MY3UWFN77ANCNFSM5MA4CPEA . Triage notifications on the go with GitHub Mobile for iOS https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 or Android https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub. You are receiving this because you commented.Message ID: @.***> -- Xuebin Qin PhD Department of Computing Science University of Alberta, Edmonton, AB, Canada Homepage: https://xuebinqin.github.io/ 耗时700ms左右,cpu和gpu时间没有明显差别,我显卡是1070
you may have to check if you are always running on CPU
On Sat, Jan 15, 2022 at 4:05 PM dbAIStudio @.***> wrote:
try to just count the time of this line: d1,d2,d3,d4,d5,d6,d7= net(inputstest) … <#m-80561680867756588> On Sat, Jan 15, 2022 at 3:54 PM dbAIStudio @.*> wrote: 1.确保您输入的图像是320x320 2.确保您没有考虑图像加载和调整大小的时间 3.多次运行推理并获得平均值,通常像pytorch和tensorflow这样的深度学习框架需要初始化馈送第一张图像时的计算,因此第一张馈送图像的时间成本通常需要更多时间。4. 确保您的代码完全在 GPU 而不是 CPU 上运行。 … <#m-6488284796971335845_> On Sat, Jan 15, 2022 at 3:21 PM dbAIStudio @.> wrote: I want to do a single image inference to get the result. When num_workers=1, it takes more than 5s on the gpu. I changed it to num_workers=0. The gpu takes more than 1s, and I tested the cpu gpu time. There seems to be no difference, when my torch 1.8, what is the reason for this? — Reply to this email directly, view it on GitHub <#283 https://github.com/xuebinqin/U-2-Net/issues/283 <#283 https://github.com/xuebinqin/U-2-Net/issues/283>>, or unsubscribe https://github.com/notifications/unsubscribe-auth/ADSGORMAUI7XZCH7MT3KAWDUWFKDXANCNFSM5MA4CPEA https://github.com/notifications/unsubscribe-auth/ADSGORMAUI7XZCH7MT3KAWDUWFKDXANCNFSM5MA4CPEA https://github.com/notifications/unsubscribe-auth/ADSGORMAUI7XZCH7MT3KAWDUWFKDXANCNFSM5MA4CPEA https://github.com/notifications/unsubscribe-auth/ADSGORMAUI7XZCH7MT3KAWDUWFKDXANCNFSM5MA4CPEA . Triage notifications on the go with GitHub Mobile for iOS https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 or Android https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub. You are receiving this because you are subscribed to this thread.Message ID: @.> -- Xuebin Qin PhD Department of Computing Science University of Alberta, Edmonton, AB, Canada Homepage: https://xuebinqin.github.io/ https://xuebinqin.github.io/ 我把初始化模型放到了前面,我想要单张图像进行推理,代码中 if torch.cuda.is_available(): 是进入的,确认时gpu版本的torch 我在下面这段代码中加的时间,dataloader 比较耗时并且d1,d2,d3,d4,d5,d6,d7= net(inputs_test)耗时700ms --------- 2. dataloader --------- #1 https://github.com/xuebinqin/U-2-Net/issues/1. dataloader test_salobj_dataset = SalObjDataset(img_name_list = img_name_list, lbl_name_list = [], transform=transforms.Compose([RescaleT(320), ToTensorLab(flag=0)]) ) test_salobj_dataloader = DataLoader(test_salobj_dataset, batch_size=1, shuffle=False, num_workers=1)
--------- 4. inference for each image --------- for i_test, data_test in
enumerate(test_salobj_dataloader): print("inferencing:",img_name_list[i_test].split(os.sep)[-1]) inputs_test = data_test['image'] inputs_test = inputs_test.type(torch.FloatTensor) if torch.cuda.is_available(): inputs_test = Variable(inputs_test.cuda()) else: inputs_test = Variable(inputs_test) d1,d2,d3,d4,d5,d6,d7= net(inputs_test) — Reply to this email directly, view it on GitHub <#283 (comment) https://github.com/xuebinqin/U-2-Net/issues/283#issuecomment-1013669125>, or unsubscribe https://github.com/notifications/unsubscribe-auth/ADSGORPIONXHZ6U22RA3MY3UWFN77ANCNFSM5MA4CPEA https://github.com/notifications/unsubscribe-auth/ADSGORPIONXHZ6U22RA3MY3UWFN77ANCNFSM5MA4CPEA . Triage notifications on the go with GitHub Mobile for iOS https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 or Android https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub. You are receiving this because you commented.Message ID: @.***> -- Xuebin Qin PhD Department of Computing Science University of Alberta, Edmonton, AB, Canada Homepage: https://xuebinqin.github.io/ 耗时700ms左右,cpu和gpu时间没有明显差别,我显卡是1070
— Reply to this email directly, view it on GitHub https://github.com/xuebinqin/U-2-Net/issues/283#issuecomment-1013670791, or unsubscribe https://github.com/notifications/unsubscribe-auth/ADSGORI4U6KSEOYX3QLCJALUWFPJFANCNFSM5MA4CPEA . Triage notifications on the go with GitHub Mobile for iOS https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 or Android https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub.
You are receiving this because you commented.Message ID: @.***>
-- Xuebin Qin PhD Department of Computing Science University of Alberta, Edmonton, AB, Canada Homepage: https://xuebinqin.github.io/
you may have to check if you are always running on CPU … On Sat, Jan 15, 2022 at 4:05 PM dbAIStudio @.> wrote: try to just count the time of this line: d1,d2,d3,d4,d5,d6,d7= net(inputstest) … <#m-80561680867756588_> On Sat, Jan 15, 2022 at 3:54 PM dbAIStudio @.> wrote: 1.确保您输入的图像是320x320 2.确保您没有考虑图像加载和调整大小的时间 3.多次运行推理并获得平均值,通常像pytorch和tensorflow这样的深度学习框架需要初始化馈送第一张图像时的计算,因此第一张馈送图像的时间成本通常需要更多时间。4. 确保您的代码完全在 GPU 而不是 CPU 上运行。 … <#m-6488284796971335845> On Sat, Jan 15, 2022 at 3:21 PM dbAIStudio @.> wrote: I want to do a single image inference to get the result. When num_workers=1, it takes more than 5s on the gpu. I changed it to num_workers=0. The gpu takes more than 1s, and I tested the cpu gpu time. There seems to be no difference, when my torch 1.8, what is the reason for this? — Reply to this email directly, view it on GitHub <#283 <#283> <#283 <#283>>>, or unsubscribe https://github.com/notifications/unsubscribe-auth/ADSGORMAUI7XZCH7MT3KAWDUWFKDXANCNFSM5MA4CPEA https://github.com/notifications/unsubscribe-auth/ADSGORMAUI7XZCH7MT3KAWDUWFKDXANCNFSM5MA4CPEA https://github.com/notifications/unsubscribe-auth/ADSGORMAUI7XZCH7MT3KAWDUWFKDXANCNFSM5MA4CPEA https://github.com/notifications/unsubscribe-auth/ADSGORMAUI7XZCH7MT3KAWDUWFKDXANCNFSM5MA4CPEA . Triage notifications on the go with GitHub Mobile for iOS https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 or Android https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub. You are receiving this because you are subscribed to this thread.Message ID: @.> -- Xuebin Qin PhD Department of Computing Science University of Alberta, Edmonton, AB, Canada Homepage: https://xuebinqin.github.io/ https://xuebinqin.github.io/ 我把初始化模型放到了前面,我想要单张图像进行推理,代码中 if torch.cuda.is_available(): 是进入的,确认时gpu版本的torch 我在下面这段代码中加的时间,dataloader 比较耗时并且d1,d2,d3,d4,d5,d6,d7= net(inputs_test)耗时700ms --------- 2. dataloader --------- #1 <#1>. dataloader test_salobj_dataset = SalObjDataset(img_name_list = img_name_list, lbl_name_list = [], transform=transforms.Compose([RescaleT(320), ToTensorLab(flag=0)]) ) test_salobj_dataloader = DataLoader(test_salobj_dataset, batch_size=1, shuffle=False, num_workers=1) # --------- 4. inference for each image --------- for i_test, data_test in enumerate(test_salobj_dataloader): print("inferencing:",img_name_list[i_test].split(os.sep)[-1]) inputs_test = data_test['image'] inputs_test = inputs_test.type(torch.FloatTensor) if torch.cuda.is_available(): inputs_test = Variable(inputs_test.cuda()) else: inputs_test = Variable(inputs_test) d1,d2,d3,d4,d5,d6,d7= net(inputs_test) — Reply to this email directly, view it on GitHub <#283 (comment) <#283 (comment)>>, or unsubscribe https://github.com/notifications/unsubscribe-auth/ADSGORPIONXHZ6U22RA3MY3UWFN77ANCNFSM5MA4CPEA https://github.com/notifications/unsubscribe-auth/ADSGORPIONXHZ6U22RA3MY3UWFN77ANCNFSM5MA4CPEA . Triage notifications on the go with GitHub Mobile for iOS https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 or Android https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub. You are receiving this because you commented.Message ID: @.**> -- Xuebin Qin PhD Department of Computing Science University of Alberta, Edmonton, AB, Canada Homepage: https://xuebinqin.github.io/ 耗时700ms左右,cpu和gpu时间没有明显差别,我显卡是1070 — Reply to this email directly, view it on GitHub <#283 (comment)>, or unsubscribe https://github.com/notifications/unsubscribe-auth/ADSGORI4U6KSEOYX3QLCJALUWFPJFANCNFSM5MA4CPEA . Triage notifications on the go with GitHub Mobile for iOS https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675 or Android https://play.google.com/store/apps/details?id=com.github.android&referrer=utm_campaign%3Dnotification-email%26utm_medium%3Demail%26utm_source%3Dgithub. You are receiving this because you commented.Message ID: @.> -- Xuebin Qin PhD Department of Computing Science University of Alberta, Edmonton, AB, Canada Homepage: https://xuebinqin.github.io/
我一直都在cpu上运行,那一行不管gpu还是cpu都是700ms左右, 但if torch.cuda.is_available():都是True,我运行中报这个警告, d:\workspace\zs\python-3.8.5-embed-amd64\lib\site-packages\torch\nn\functional.py:3328: UserWarning: nn.functional.upsample is deprecated. Use nn.functional.interpolate instead. warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.") d:\workspace\zs\python-3.8.5-embed-amd64\lib\site-packages\torch\nn\functional.py:3454: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details. warnings.warn( d:\workspace\zs\python-3.8.5-embed-amd64\lib\site-packages\torch\nn\functional.py:1709: UserWarning: nn.functional.sigmoid is deprecated. Use torch.sigmoid instead. warnings.warn("nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.")
I want to do a single image inference to get the result. When num_workers=1, it takes more than 5s on the gpu. I changed it to num_workers=0. The gpu takes more than 1s, and I tested the cpu gpu time. There seems to be no difference, when my torch 1.8, what is the reason for this?