yangsenius / TransPose

PyTorch Implementation for "TransPose: Keypoint localization via Transformer", ICCV 2021.
https://github.com/yangsenius/TransPose/releases/download/paper/transpose.pdf
MIT License
361 stars 58 forks source link

Higher accuracy when running test than in README #16

Closed xsacha closed 3 years ago

xsacha commented 3 years ago

Hi, is the README accuracy outdated? I ran the test model (TP_R_256x192_d256_h1024_enc4_mh8) as-is with latest pytorch:

Test: [0/794] Time 1.056 (1.056) Loss 0.0001 (0.0001) Accuracy 0.977 (0.977) Test: [100/794] Time 0.077 (0.092) Loss 0.0003 (0.0003) Accuracy 0.898 (0.866) Test: [200/794] Time 0.082 (0.086) Loss 0.0004 (0.0003) Accuracy 0.841 (0.869) Test: [300/794] Time 0.078 (0.084) Loss 0.0002 (0.0003) Accuracy 0.965 (0.866) Test: [400/794] Time 0.078 (0.083) Loss 0.0002 (0.0003) Accuracy 0.866 (0.866) Test: [500/794] Time 0.082 (0.082) Loss 0.0002 (0.0003) Accuracy 0.947 (0.868) Test: [600/794] Time 0.080 (0.082) Loss 0.0006 (0.0003) Accuracy 0.841 (0.867) Test: [700/794] Time 0.078 (0.081) Loss 0.0004 (0.0003) Accuracy 0.918 (0.867) => writing results json to output/coco/transpose_r/TP_R_256x192_d256_h1024_enc4_mh8/results/keypoints_val2017_results_0.json Loading and preparing results... DONE (t=0.33s) creating index... index created! Running per image evaluation... Evaluate annotation type keypoints DONE (t=2.71s). Accumulating evaluation results... DONE (t=0.12s). Average Precision (AP) @[ IoU=0.50:0.95 area= all maxDets= 20 ] = 0.751 Average Precision (AP) @[ IoU=0.50 area= all maxDets= 20 ] = 0.926 Average Precision (AP) @[ IoU=0.75 area= all maxDets= 20 ] = 0.826 Average Precision (AP) @[ IoU=0.50:0.95 area=medium maxDets= 20 ] = 0.719 Average Precision (AP) @[ IoU=0.50:0.95 area= large maxDets= 20 ] = 0.796 Average Recall (AR) @[ IoU=0.50:0.95 area= all maxDets= 20 ] = 0.778 Average Recall (AR) @[ IoU=0.50 area= all maxDets= 20 ] = 0.932 Average Recall (AR) @[ IoU=0.75 area= all maxDets= 20 ] = 0.841 Average Recall (AR) @[ IoU=0.50:0.95 area=medium maxDets= 20 ] = 0.743 Average Recall (AR) @[ IoU=0.50:0.95 area= large maxDets= 20 ] = 0.830 Arch AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
transpose_r 0.751 0.926 0.826 0.719 0.796 0.778 0.932 0.841 0.743 0.830 **

From README:

Model Input size FPS* GFLOPs AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
TransPose-R-A3 256x192 141 8.0 0.717 0.889 0.788 0.680 0.786 0.771 0.930 0.836 0.727 0.835
TransPose-R-A4 256x192 138 8.9 0.726 0.891 0.799 0.688 0.798 0.780 0.931 0.845 0.735 0.844
yangsenius commented 3 years ago

Hi, @xsacha. 0.751 AP is achieved by using GT human boxes. The 0.726AP is achieved when python tools/test.py --cfg experiments/coco/transpose_r/TP_R_256x192_d256_h1024_enc4_mh8.yaml TEST.USE_GT_BBOX False

xsacha commented 3 years ago

Oh. Thanks for that.