Open SrMouraSilva opened 5 years ago
Continue discussion https://github.com/monsta-hd/boltzmann-machines/issues/7#issuecomment-469763301
The current lib has a lot of metrics, but in the research is expected try other metrics.
Example:
def my_custom_evaluate_function(metric_name, model, minibatch): """Mean of activated units after reconstruction""" h_means = model._means_h_given_v(minibatch) h0 = self._sample_h_given_v(h_means) v_means = model._means_v_given_h(gh) v1 = self._sample_v_given_h(v_means) with tf.name_scope(metric_name): tf.summary.scalar(metric_name, tf.mean(v1, axis=1)) # Maybe axis=1 rbm = BernoulliRBM(n_visible=784, n_hidden=args.n_hidden, metrics_config=dict( # The default metrics msre=True, pll=True, feg=True, train_metrics_every_iter=1000, val_metrics_every_epoch=2, feg_every_epoch=4, n_batches_for_feg=50, # New metrics my_custom_evaluate=my_custom_evaluate_function ), verbose=True, )
Continue discussion https://github.com/monsta-hd/boltzmann-machines/issues/7#issuecomment-469763301
The current lib has a lot of metrics, but in the research is expected try other metrics.
Example: