yijingru / BBAVectors-Oriented-Object-Detection

[WACV2021] Oriented Object Detection in Aerial Images with Box Boundary-Aware Vectors
MIT License
469 stars 88 forks source link

train loss 很低 #102

Open jianminglv20 opened 3 years ago

jianminglv20 commented 3 years ago

作者,您好!我使用您的代码测试我自己的数据集,刚开始训练时train loss就很低,不知道是否是batchsize设置太小的原因?一块GPU不能训练此代码吗?还是需要改些参数!

(dota) xiaobu@xiaobu-MS-7C82:~/project/BBAVectors-Oriented-Object-Detection-master$ python main.py --data_dir ./planesplit1 --num_epoch 100 --batch_size 3 --dataset dota --phase train Setting up data... Starting training...

Epoch: 1/100 train loss: 1.0731722713907137 /home/xiaobu/anaconda3/envs/dota/lib/python3.6/site-packages/torch/optim/lr_scheduler.py:143: UserWarning: The epoch parameter in scheduler.step() was not necessary and is being deprecated where possible. Please use scheduler.step() to step the scheduler. During the deprecation, if epoch is different from None, the closed form is used instead of the new chainable form, where available. Please open an issue if you are unable to replicate your use case: https://github.com/pytorch/pytorch/issues/new/choose. warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning)

Epoch: 2/100 train loss: 0.0006129515672007095

Epoch: 3/100 train loss: 0.00011045779322242325

yijingru commented 3 years ago

Overfit?