Closed Meaquadddd closed 3 months ago
Hi, thanks for your interest in our work!
You can try this:
class Llama3SAPOAdapter(BaseModelAdapter):
use_fast_tokenizer = False
def match(self, model_path: str):
return "llama3-8b" in model_path.lower()
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
revision = from_pretrained_kwargs.get("revision", "main")
tokenizer = AutoTokenizer.from_pretrained(
model_path, revision=revision
)
model = AutoModelForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
**from_pretrained_kwargs,
).eval()
return model, tokenizer
def get_default_conv_template(self, model_path: str) -> Conversation:
return get_conv_template("llama3-8b-sapo")
# llama-3-8b-chatml
register_conv_template(
Conversation(
name="llama3-8b-sapo",
roles=("<|im_start|>user", "<|im_start|>assistant"),
sep_style=SeparatorStyle.CHATML,
sep="<|im_end|>",
stop_token_ids=[128256,128257],
stop_str="<|im_end|>",
)
)
Thank you !!
Hi, nice work and well written paper !
I would like to ask that since you have used
chatml
template when training with orpo for llama3, I want to know what chat template to use hen evaluating model with MT-Bench withFastchat
library.I have tried the following but it seems that it does not to work for me:
register_conv_template( Conversation( name="llava-chatml", system_template="<|im_start|>system\n{system_message}", system_message="Answer the questions.", roles=("<|im_start|>user", "<|im_start|>assistant"), sep_style=SeparatorStyle.CHATML, sep="<|im_end|>", stop_str="<|im_end|>", ) )
Many thanks for the assistance.