Open SISTMrL opened 3 years ago
The vcoco annotations we used can be downloaded from here: vcoco annotations, best checkpoint and results. The annotation format and object categories are the same as HICO-DET, you can change the action related category related setting in the hico.yaml and train on v-coco. The evaluation process can be referred to v-coco.
@yoyomimi I downloaded the all_vcoco_test_result.pkl
but failed to run evaluation code from s-gupta/v-coco
with it.
>>> from vsrl_eval import VCOCOeval
>>> v = VCOCOeval("data/vcoco/vcoco_val.json", "data/instances_vcoco_all_2014.json", "data/splits/vcoco_val.ids")
>>> v._do_eval('/home/user/Desktop/all_vcoco_test_result.pkl', ovr_thresh=0.5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/media/storage1/datasets/vcoco/v-coco/vsrl_eval.py", line 193, in _do_eval
self._do_role_eval(vcocodb, detections_file, ovr_thresh=ovr_thresh, eval_type='scenario_1')
File "/media/storage1/datasets/vcoco/v-coco/vsrl_eval.py", line 316, in _do_role_eval
assert(np.amax(rec) <= 1)
File "<__array_function__ internals>", line 5, in amax
File "/usr/local/lib/python3.8/site-packages/numpy/core/fromnumeric.py", line 2705, in amax
return _wrapreduction(a, np.maximum, 'max', axis, None, out,
File "/usr/local/lib/python3.8/site-packages/numpy/core/fromnumeric.py", line 87, in _wrapreduction
return ufunc.reduce(obj, axis, dtype, out, **passkwargs)
ValueError: zero-size array to reduction operation maximum which has no identity
Any hint on this?
hello, could you please release the vcoco version code, thanks!