2024-07-31 20:36:24,151 - mmrotate - INFO - workflow: [('train', 1)], max: 12 epochs
2024-07-31 20:36:24,151 - mmrotate - INFO - Checkpoints will be saved to /home/shs/STD_new/work_dirs/rotated_imted_hb1m_oriented_rcnn_hivitdet_base_1x_dota_ms_rr_le90_stdc_xyawh321v by HardDiskBackend.
Traceback (most recent call last):
File "main/mmrotate-main/tools/train.py", line 199, in
main()
File "main/mmrotate-main/tools/train.py", line 188, in main
train_detector(
File "/home/shs/STD_new/mmrotate/mmrotate/apis/train.py", line 144, in train_detector
runner.run(data_loaders, cfg.workflow)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/mmcv/runner/epoch_based_runner.py", line 136, in run
epoch_runner(data_loaders[i], kwargs)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/mmcv/runner/epoch_based_runner.py", line 53, in train
self.run_iter(data_batch, train_mode=True, kwargs)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/mmcv/runner/epoch_based_runner.py", line 31, in run_iter
outputs = self.model.train_step(data_batch, self.optimizer,
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/mmcv/parallel/data_parallel.py", line 77, in train_step
return self.module.train_step(inputs[0], kwargs[0])
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/mmdet/models/detectors/base.py", line 248, in train_step
losses = self(data)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(input, kwargs)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/mmcv/runner/fp16_utils.py", line 116, in new_func
return old_func(args, kwargs)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/mmdet/models/detectors/base.py", line 172, in forward
return self.forward_train(img, img_metas, kwargs)
File "/home/shs/STD_new/mmrotate/mmrotate/models/detectors/rotated_imted.py", line 102, in forward_train
x = self.extract_feat(img)
File "/home/shs/STD_new/mmrotate/mmrotate/models/detectors/rotated_imted.py", line 39, in extract_feat
x = self.backbone(img)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(input, kwargs)
File "/home/shs/STD_new/mmrotate/mmrotate/models/backbones/lsknet.py", line 224, in forward
x = self.forward_features(x)
File "/home/shs/STD_new/mmrotate/mmrotate/models/backbones/lsknet.py", line 214, in forward_features
x, H, W = patch_embed(x)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, *kwargs)
File "/home/shs/STD_new/mmrotate/mmrotate/models/backbones/lsknet.py", line 127, in forward
x = self.norm(x)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(input, **kwargs)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/torch/nn/modules/batchnorm.py", line 131, in forward
return F.batch_norm(
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/torch/nn/functional.py", line 2056, in batch_norm
return torch.batch_norm(
RuntimeError: cuDNN error: CUDNN_STATUS_EXECUTION_FAILED
采用单核跑
2024-07-31 20:36:24,151 - mmrotate - INFO - workflow: [('train', 1)], max: 12 epochs 2024-07-31 20:36:24,151 - mmrotate - INFO - Checkpoints will be saved to /home/shs/STD_new/work_dirs/rotated_imted_hb1m_oriented_rcnn_hivitdet_base_1x_dota_ms_rr_le90_stdc_xyawh321v by HardDiskBackend. Traceback (most recent call last): File "main/mmrotate-main/tools/train.py", line 199, in
main()
File "main/mmrotate-main/tools/train.py", line 188, in main
train_detector(
File "/home/shs/STD_new/mmrotate/mmrotate/apis/train.py", line 144, in train_detector
runner.run(data_loaders, cfg.workflow)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/mmcv/runner/epoch_based_runner.py", line 136, in run
epoch_runner(data_loaders[i], kwargs)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/mmcv/runner/epoch_based_runner.py", line 53, in train
self.run_iter(data_batch, train_mode=True, kwargs)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/mmcv/runner/epoch_based_runner.py", line 31, in run_iter
outputs = self.model.train_step(data_batch, self.optimizer,
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/mmcv/parallel/data_parallel.py", line 77, in train_step
return self.module.train_step(inputs[0], kwargs[0])
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/mmdet/models/detectors/base.py", line 248, in train_step
losses = self(data)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(input, kwargs)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/mmcv/runner/fp16_utils.py", line 116, in new_func
return old_func(args, kwargs)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/mmdet/models/detectors/base.py", line 172, in forward
return self.forward_train(img, img_metas, kwargs)
File "/home/shs/STD_new/mmrotate/mmrotate/models/detectors/rotated_imted.py", line 102, in forward_train
x = self.extract_feat(img)
File "/home/shs/STD_new/mmrotate/mmrotate/models/detectors/rotated_imted.py", line 39, in extract_feat
x = self.backbone(img)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(input, kwargs)
File "/home/shs/STD_new/mmrotate/mmrotate/models/backbones/lsknet.py", line 224, in forward
x = self.forward_features(x)
File "/home/shs/STD_new/mmrotate/mmrotate/models/backbones/lsknet.py", line 214, in forward_features
x, H, W = patch_embed(x)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, *kwargs)
File "/home/shs/STD_new/mmrotate/mmrotate/models/backbones/lsknet.py", line 127, in forward
x = self.norm(x)
File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(input, **kwargs) File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/torch/nn/modules/batchnorm.py", line 131, in forward return F.batch_norm( File "/home/shs/anaconda3/envs/STD3/lib/python3.8/site-packages/torch/nn/functional.py", line 2056, in batch_norm return torch.batch_norm( RuntimeError: cuDNN error: CUDNN_STATUS_EXECUTION_FAILED 采用单核跑