yuhuan-wu / P2T

[TPAMI22] Pyramid Pooling Transformer for Scene Understanding
200 stars 18 forks source link

Loading the pretrained model (Object Detection Task) #19

Open Genbao-Xu opened 4 months ago

Genbao-Xu commented 4 months ago

Hello author, I have a question about loading pretrained models for object detection tasks. The following is the part of loading the pre-trained model in my training log file, which is a little different from the result of loading the pretrained model in the log file you provided (yours shows 'pretrained=.... ' directly after type='retinanet', is there any difference between the two, and whether I successfully loaded the pretrained model, thank you.) My: model = dict( type='RetinaNet', backbone=dict( type='p2t_tiny', depth=50, num stages=4, out indices=(0,1,2,3), frozen stages=1, norm cfg=dict(type='BN', requires_grad=True) norm eval=True, style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='pretrained/p2t_tiny.pth' ), )

Yours: model = dict(
type='RetinaNet',
pretrained='data/pretrained/p2t/p2t_tiny.pth', backbone=dict( type='p2t_tiny', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch' )

yuhuan-wu commented 4 months ago

Hi Genbao,

Thank you for your email. I understand your issue.

The logs I released were trained using an earlier version of the mmdet library. Since mmdet has updated the way it loads pretrained models, there may be inconsistencies as you mentioned.

To check if the pretrained model has been successfully loaded, please search for logs that indicate "loading checkpoints/pretrained weights" or similar. You can conveniently search using the model file's path.

Additionally, you can compare the speed of loss reduction in my logs with your training logs. If the loss in your training is decreasing significantly slower than in my logs, it is likely that the pretrained model was not loaded by the mmdet library code.

Best Regards, Yu-Huan

Genbao-Xu commented 4 months ago

Thanks for the answer, I pasted a part of my training log file here, and my loss here is about the same as your log file, and the other parameters are basically the same. But my results after the first epoch training are very different from yours, what is the reason for this (my environment is pytorch1.8, timm0.4.12, mmdet2.14),thank you!

sys.platform: linux Python: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0] CUDA available: True GPU 0,1,2,3,4,5,6,7: NVIDIA GeForce RTX 4090 CUDA_HOME: /usr/local/cuda-11.4 NVCC: Build cuda_11.4.r11.4/compiler.30033411_0 GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 PyTorch: 1.8.1+cu111 PyTorch compiling details: PyTorch built with:

TorchVision: 0.9.1+cu111 OpenCV: 3.4.17 MMCV: 1.3.8 MMCV Compiler: GCC 9.4 MMCV CUDA Compiler: 11.4 MMDetection: 2.14.0+unknown

2024-06-28 11:14:37,581 - mmdet - INFO - Distributed training: True 2024-06-28 11:14:37,838 - mmdet - INFO - Config: model = dict( type='MaskRCNN', backbone=dict( type='p2t_tiny', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='pretrained/p2t_tiny.pth')), neck=dict( type='FPN', in_channels=[48, 96, 240, 384], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=dict( type='FCNMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))), train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5))) dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type='CocoDataset', ann_file='data/coco/annotations/instances_train2017.json', img_prefix='data/coco/train2017/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']) ]), val=dict( type='CocoDataset', ann_file='data/coco/annotations/instances_val2017.json', img_prefix='data/coco/val2017/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ]), test=dict( type='CocoDataset', ann_file='data/coco/annotations/instances_val2017.json', img_prefix='data/coco/val2017/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ])) evaluation = dict(metric=['bbox', 'segm']) checkpoint_config = dict(interval=1) log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')]) custom_hooks = [dict(type='NumClassCheckHook')] dist_params = dict(backend='gloo') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] optimizer = dict(type='AdamW', lr=0.0001, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[8, 11]) total_epochs = 12 fp16 = None find_unused_parameters = True work_dir = './work_dirs/mask_rcnn_p2t_t_fpn_1x_coco' gpu_ids = range(0, 8)

2024-06-28 11:15:08,520 - mmdet - INFO - Start running, host: zkyd@zkyd, work_dir: /home/zkyd/P2T-main/detection/work_dirs/mask_rcnn_p2t_t_fpn_1x_coco 2024-06-28 11:15:08,521 - mmdet - INFO - Hooks will be executed in the following order: before_run: (VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) CheckpointHook
(NORMAL ) DistEvalHook
(VERY_LOW ) TextLoggerHook


before_train_epoch: (VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) DistSamplerSeedHook
(NORMAL ) DistEvalHook
(NORMAL ) NumClassCheckHook
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook


before_train_iter: (VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) DistEvalHook
(LOW ) IterTimerHook


after_train_iter: (ABOVE_NORMAL) OptimizerHook
(NORMAL ) CheckpointHook
(NORMAL ) DistEvalHook
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook


after_train_epoch: (NORMAL ) CheckpointHook
(NORMAL ) DistEvalHook
(VERY_LOW ) TextLoggerHook


before_val_epoch: (NORMAL ) DistSamplerSeedHook
(NORMAL ) NumClassCheckHook
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook


before_val_iter: (LOW ) IterTimerHook


after_val_iter: (LOW ) IterTimerHook


after_val_epoch: (VERY_LOW ) TextLoggerHook


2024-06-28 11:15:08,522 - mmdet - INFO - workflow: [('train', 1)], max: 12 epochs 2024-06-28 11:16:31,134 - mmdet - INFO - Epoch [1][50/7330] lr: 9.890e-06, eta: 1 day, 16:20:09, time: 1.652, data_time: 0.988, memory: 11574, loss_rpn_cls: 0.6232, loss_rpn_bbox: 0.3000, loss_cls: 2.4553, acc: 62.4524, loss_bbox: 0.0568, loss_mask: 0.6978, loss: 4.1329 2024-06-28 11:17:01,480 - mmdet - INFO - Epoch [1][100/7330] lr: 1.988e-05, eta: 1 day, 3:33:46, time: 0.607, data_time: 0.059, memory: 12063, loss_rpn_cls: 0.2532, loss_rpn_bbox: 0.2080, loss_cls: 0.7237, acc: 89.0061, loss_bbox: 0.2247, loss_mask: 0.6844, loss: 2.0940 2024-06-28 11:17:31,752 - mmdet - INFO - Epoch [1][150/7330] lr: 2.987e-05, eta: 23:17:07, time: 0.605, data_time: 0.067, memory: 12063, loss_rpn_cls: 0.2506, loss_rpn_bbox: 0.1710, loss_cls: 0.6347, acc: 89.1829, loss_bbox: 0.2341, loss_mask: 0.6634, loss: 1.9537 2024-06-28 11:18:02,731 - mmdet - INFO - Epoch [1][200/7330] lr: 3.986e-05, eta: 21:13:59, time: 0.620, data_time: 0.061, memory: 12063, loss_rpn_cls: 0.2572, loss_rpn_bbox: 0.1575, loss_cls: 0.6260, acc: 89.2976, loss_bbox: 0.2333, loss_mask: 0.6446, loss: 1.9187 2024-06-28 11:18:32,808 - mmdet - INFO - Epoch [1][250/7330] lr: 4.985e-05, eta: 19:54:20, time: 0.601, data_time: 0.062, memory: 12063, loss_rpn_cls: 0.2564, loss_rpn_bbox: 0.1401, loss_cls: 0.5643, acc: 90.4216, loss_bbox: 0.2135, loss_mask: 0.6263, loss: 1.8006 2024-06-28 11:19:02,916 - mmdet - INFO - Epoch [1][300/7330] lr: 5.984e-05, eta: 19:01:22, time: 0.602, data_time: 0.087, memory: 12063, loss_rpn_cls: 0.2497, loss_rpn_bbox: 0.1256, loss_cls: 0.5311, acc: 93.7434, loss_bbox: 0.1989, loss_mask: 0.6191, loss: 1.7244 2024-06-28 11:19:33,024 - mmdet - INFO - Epoch [1][350/7330] lr: 6.983e-05, eta: 18:23:25, time: 0.602, data_time: 0.065, memory: 12063, loss_rpn_cls: 0.2345, loss_rpn_bbox: 0.1174, loss_cls: 0.4890, acc: 94.4854, loss_bbox: 0.1930, loss_mask: 0.6046, loss: 1.6384 2024-06-28 11:20:04,507 - mmdet - INFO - Epoch [1][400/7330] lr: 7.982e-05, eta: 17:59:45, time: 0.629, data_time: 0.078, memory: 12127, loss_rpn_cls: 0.2427, loss_rpn_bbox: 0.1182, loss_cls: 0.4770, acc: 94.2483, loss_bbox: 0.1986, loss_mask: 0.5975, loss: 1.6339 2024-06-28 11:20:34,985 - mmdet - INFO - Epoch [1][450/7330] lr: 8.981e-05, eta: 17:38:01, time: 0.610, data_time: 0.062, memory: 12127, loss_rpn_cls: 0.2288, loss_rpn_bbox: 0.1139, loss_cls: 0.4694, acc: 94.2065, loss_bbox: 0.2021, loss_mask: 0.5913, loss: 1.6056 2024-06-28 11:21:04,992 - mmdet - INFO - Epoch [1][500/7330] lr: 9.980e-05, eta: 17:19:11, time: 0.600, data_time: 0.054, memory: 12127, loss_rpn_cls: 0.2318, loss_rpn_bbox: 0.1082, loss_cls: 0.4454, acc: 94.0564, loss_bbox: 0.2081, loss_mask: 0.5892, loss: 1.5827 2024-06-28 11:21:35,328 - mmdet - INFO - Epoch [1][550/7330] lr: 1.000e-04, eta: 17:04:28, time: 0.606, data_time: 0.060, memory: 12127, loss_rpn_cls: 0.2296, loss_rpn_bbox: 0.1047, loss_cls: 0.4592, acc: 94.1521, loss_bbox: 0.2050, loss_mask: 0.5841, loss: 1.5826 2024-06-28 11:22:05,889 - mmdet - INFO - Epoch [1][600/7330] lr: 1.000e-04, eta: 16:52:46, time: 0.612, data_time: 0.055, memory: 12127, loss_rpn_cls: 0.2205, loss_rpn_bbox: 0.1077, loss_cls: 0.4347, acc: 94.0154, loss_bbox: 0.2072, loss_mask: 0.5800, loss: 1.5501 2024-06-28 11:22:36,242 - mmdet - INFO - Epoch [1][650/7330] lr: 1.000e-04, eta: 16:42:15, time: 0.607, data_time: 0.075, memory: 12127, loss_rpn_cls: 0.2317, loss_rpn_bbox: 0.1134, loss_cls: 0.4081, acc: 94.0359, loss_bbox: 0.2056, loss_mask: 0.5766, loss: 1.5354 2024-06-28 11:23:12,526 - mmdet - INFO - Epoch [1][700/7330] lr: 1.000e-04, eta: 16:45:32, time: 0.726, data_time: 0.061, memory: 12127, loss_rpn_cls: 0.2261, loss_rpn_bbox: 0.1095, loss_cls: 0.4080, acc: 93.7839, loss_bbox: 0.2138, loss_mask: 0.5620, loss: 1.5194 2024-06-28 11:23:43,208 - mmdet - INFO - Epoch [1][750/7330] lr: 1.000e-04, eta: 16:37:25, time: 0.614, data_time: 0.055, memory: 12127, loss_rpn_cls: 0.2245, loss_rpn_bbox: 0.1075, loss_cls: 0.4046, acc: 93.6885, loss_bbox: 0.2187, loss_mask: 0.5698, loss: 1.5252 2024-06-28 11:24:13,398 - mmdet - INFO - Epoch [1][800/7330] lr: 1.000e-04, eta: 16:29:22, time: 0.604, data_time: 0.073, memory: 12127, loss_rpn_cls: 0.2043, loss_rpn_bbox: 0.1065, loss_cls: 0.4059, acc: 93.6145, loss_bbox: 0.2216, loss_mask: 0.5665, loss: 1.5049 2024-06-28 11:24:43,564 - mmdet - INFO - Epoch [1][850/7330] lr: 1.000e-04, eta: 16:22:09, time: 0.603, data_time: 0.070, memory: 12127, loss_rpn_cls: 0.2082, loss_rpn_bbox: 0.1051, loss_cls: 0.3807, acc: 94.0498, loss_bbox: 0.2016, loss_mask: 0.5501, loss: 1.4458 2024-06-28 11:25:13,700 - mmdet - INFO - Epoch [1][900/7330] lr: 1.000e-04, eta: 16:15:39, time: 0.603, data_time: 0.059, memory: 12127, loss_rpn_cls: 0.1983, loss_rpn_bbox: 0.1037, loss_cls: 0.4034, acc: 93.6118, loss_bbox: 0.2209, loss_mask: 0.5594, loss: 1.4858 2024-06-28 11:25:43,749 - mmdet - INFO - Epoch [1][950/7330] lr: 1.000e-04, eta: 16:09:36, time: 0.600, data_time: 0.058, memory: 12130, loss_rpn_cls: 0.1978, loss_rpn_bbox: 0.1023, loss_cls: 0.3938, acc: 93.7595, loss_bbox: 0.2148, loss_mask: 0.5509, loss: 1.4595 2024-06-28 11:26:14,271 - mmdet - INFO - Exp name: mask_rcnn_p2t_t_fpn_1x_coco.py 2024-06-28 11:26:14,272 - mmdet - INFO - Epoch [1][1000/7330] lr: 1.000e-04, eta: 16:04:51, time: 0.611, data_time: 0.068, memory: 12188, loss_rpn_cls: 0.1965, loss_rpn_bbox: 0.1022, loss_cls: 0.3959, acc: 93.5742, loss_bbox: 0.2191, loss_mask: 0.5463, loss: 1.4600 2024-06-28 11:26:44,257 - mmdet - INFO - Epoch [1][1050/7330] lr: 1.000e-04, eta: 15:59:44, time: 0.600, data_time: 0.060, memory: 12188, loss_rpn_cls: 0.1944, loss_rpn_bbox: 0.1005, loss_cls: 0.3969, acc: 93.5896, loss_bbox: 0.2177, loss_mask: 0.5449, loss: 1.4544 2024-06-28 11:27:13,594 - mmdet - INFO - Epoch [1][1100/7330] lr: 1.000e-04, eta: 15:54:12, time: 0.587, data_time: 0.069, memory: 12188, loss_rpn_cls: 0.1744, loss_rpn_bbox: 0.0969, loss_cls: 0.3855, acc: 93.6462, loss_bbox: 0.2197, loss_mask: 0.5399, loss: 1.4163 2024-06-28 11:27:43,566 - mmdet - INFO - Epoch [1][1150/7330] lr: 1.000e-04, eta: 15:49:52, time: 0.599, data_time: 0.064, memory: 12188, loss_rpn_cls: 0.1859, loss_rpn_bbox: 0.1065, loss_cls: 0.3920, acc: 93.4961, loss_bbox: 0.2224, loss_mask: 0.5365, loss: 1.4431 2024-06-28 11:28:14,295 - mmdet - INFO - Epoch [1][1200/7330] lr: 1.000e-04, eta: 15:46:49, time: 0.615, data_time: 0.072, memory: 12188, loss_rpn_cls: 0.1985, loss_rpn_bbox: 0.1054, loss_cls: 0.3860, acc: 93.4558, loss_bbox: 0.2189, loss_mask: 0.5309, loss: 1.4396 2024-06-28 11:28:44,128 - mmdet - INFO - Epoch [1][1250/7330] lr: 1.000e-04, eta: 15:42:54, time: 0.596, data_time: 0.065, memory: 12188, loss_rpn_cls: 0.1821, loss_rpn_bbox: 0.0946, loss_cls: 0.3801, acc: 93.6277, loss_bbox: 0.2174, loss_mask: 0.5308, loss: 1.4051 2024-06-28 11:29:14,277 - mmdet - INFO - Epoch [1][1300/7330] lr: 1.000e-04, eta: 15:39:37, time: 0.603, data_time: 0.069, memory: 12188, loss_rpn_cls: 0.1792, loss_rpn_bbox: 0.0976, loss_cls: 0.3882, acc: 93.6130, loss_bbox: 0.2152, loss_mask: 0.5248, loss: 1.4050 2024-06-28 11:29:44,790 - mmdet - INFO - Epoch [1][1350/7330] lr: 1.000e-04, eta: 15:36:56, time: 0.610, data_time: 0.061, memory: 12188, loss_rpn_cls: 0.1891, loss_rpn_bbox: 0.1042, loss_cls: 0.3993, acc: 93.1917, loss_bbox: 0.2306, loss_mask: 0.5240, loss: 1.4473 2024-06-28 11:30:14,700 - mmdet - INFO - Epoch [1][1400/7330] lr: 1.000e-04, eta: 15:33:45, time: 0.598, data_time: 0.060, memory: 12188, loss_rpn_cls: 0.1722, loss_rpn_bbox: 0.0950, loss_cls: 0.3763, acc: 93.5286, loss_bbox: 0.2195, loss_mask: 0.5182, loss: 1.3812 2024-06-28 11:30:44,643 - mmdet - INFO - Epoch [1][1450/7330] lr: 1.000e-04, eta: 15:30:49, time: 0.599, data_time: 0.061, memory: 12188, loss_rpn_cls: 0.1741, loss_rpn_bbox: 0.0972, loss_cls: 0.3890, acc: 93.1616, loss_bbox: 0.2317, loss_mask: 0.5188, loss: 1.4108 2024-06-28 11:31:14,791 - mmdet - INFO - Epoch [1][1500/7330] lr: 1.000e-04, eta: 15:28:13, time: 0.603, data_time: 0.073, memory: 12188, loss_rpn_cls: 0.1831, loss_rpn_bbox: 0.1041, loss_cls: 0.4016, acc: 93.0757, loss_bbox: 0.2327, loss_mask: 0.5217, loss: 1.4432 2024-06-28 11:31:44,860 - mmdet - INFO - Epoch [1][1550/7330] lr: 1.000e-04, eta: 15:25:42, time: 0.602, data_time: 0.080, memory: 12188, loss_rpn_cls: 0.1638, loss_rpn_bbox: 0.0962, loss_cls: 0.3782, acc: 93.4617, loss_bbox: 0.2200, loss_mask: 0.5174, loss: 1.3757 2024-06-28 11:32:15,258 - mmdet - INFO - Epoch [1][1600/7330] lr: 1.000e-04, eta: 15:23:36, time: 0.608, data_time: 0.061, memory: 12188, loss_rpn_cls: 0.1755, loss_rpn_bbox: 0.0988, loss_cls: 0.3967, acc: 93.1245, loss_bbox: 0.2313, loss_mask: 0.5108, loss: 1.4131 2024-06-28 11:32:45,593 - mmdet - INFO - Epoch [1][1650/7330] lr: 1.000e-04, eta: 15:21:32, time: 0.607, data_time: 0.075, memory: 12188, loss_rpn_cls: 0.1662, loss_rpn_bbox: 0.0966, loss_cls: 0.3767, acc: 93.3164, loss_bbox: 0.2228, loss_mask: 0.5165, loss: 1.3789 2024-06-28 11:33:16,097 - mmdet - INFO - Epoch [1][1700/7330] lr: 1.000e-04, eta: 15:19:43, time: 0.610, data_time: 0.067, memory: 12188, loss_rpn_cls: 0.1659, loss_rpn_bbox: 0.0918, loss_cls: 0.3930, acc: 93.0649, loss_bbox: 0.2305, loss_mask: 0.5120, loss: 1.3931 2024-06-28 11:33:46,507 - mmdet - INFO - Epoch [1][1750/7330] lr: 1.000e-04, eta: 15:17:53, time: 0.608, data_time: 0.061, memory: 12188, loss_rpn_cls: 0.1675, loss_rpn_bbox: 0.0974, loss_cls: 0.4070, acc: 92.7400, loss_bbox: 0.2418, loss_mask: 0.5090, loss: 1.4228 2024-06-28 11:34:16,681 - mmdet - INFO - Epoch [1][1800/7330] lr: 1.000e-04, eta: 15:15:57, time: 0.603, data_time: 0.066, memory: 12188, loss_rpn_cls: 0.1708, loss_rpn_bbox: 0.0979, loss_cls: 0.3932, acc: 93.0950, loss_bbox: 0.2296, loss_mask: 0.5087, loss: 1.4002 2024-06-28 11:34:47,038 - mmdet - INFO - Epoch [1][1850/7330] lr: 1.000e-04, eta: 15:14:13, time: 0.607, data_time: 0.068, memory: 12188, loss_rpn_cls: 0.1607, loss_rpn_bbox: 0.0965, loss_cls: 0.4001, acc: 92.8784, loss_bbox: 0.2374, loss_mask: 0.5001, loss: 1.3948 2024-06-28 11:35:17,052 - mmdet - INFO - Epoch [1][1900/7330] lr: 1.000e-04, eta: 15:12:18, time: 0.600, data_time: 0.062, memory: 12188, loss_rpn_cls: 0.1542, loss_rpn_bbox: 0.0938, loss_cls: 0.3975, acc: 92.9092, loss_bbox: 0.2342, loss_mask: 0.5007, loss: 1.3804 2024-06-28 11:35:47,172 - mmdet - INFO - Epoch [1][1950/7330] lr: 1.000e-04, eta: 15:10:32, time: 0.603, data_time: 0.069, memory: 12188, loss_rpn_cls: 0.1529, loss_rpn_bbox: 0.0967, loss_cls: 0.4039, acc: 92.5674, loss_bbox: 0.2480, loss_mask: 0.4943, loss: 1.3958 2024-06-28 11:36:17,486 - mmdet - INFO - Exp name: mask_rcnn_p2t_t_fpn_1x_coco.py 2024-06-28 11:36:17,486 - mmdet - INFO - Epoch [1][2000/7330] lr: 1.000e-04, eta: 15:08:58, time: 0.606, data_time: 0.081, memory: 12188, loss_rpn_cls: 0.1502, loss_rpn_bbox: 0.0913, loss_cls: 0.4071, acc: 92.5168, loss_bbox: 0.2490, loss_mask: 0.4954, loss: 1.3931 2024-06-28 11:36:47,630 - mmdet - INFO - Epoch [1][2050/7330] lr: 1.000e-04, eta: 15:07:20, time: 0.603, data_time: 0.060, memory: 12188, loss_rpn_cls: 0.1482, loss_rpn_bbox: 0.0936, loss_cls: 0.4090, acc: 92.4817, loss_bbox: 0.2494, loss_mask: 0.5007, loss: 1.4008 2024-06-28 11:37:17,286 - mmdet - INFO - Epoch [1][2100/7330] lr: 1.000e-04, eta: 15:05:25, time: 0.593, data_time: 0.063, memory: 12188, loss_rpn_cls: 0.1421, loss_rpn_bbox: 0.0871, loss_cls: 0.3969, acc: 92.6414, loss_bbox: 0.2435, loss_mask: 0.4823, loss: 1.3520 2024-06-28 11:37:47,113 - mmdet - INFO - Epoch [1][2150/7330] lr: 1.000e-04, eta: 15:03:42, time: 0.597, data_time: 0.060, memory: 12188, loss_rpn_cls: 0.1487, loss_rpn_bbox: 0.0883, loss_cls: 0.3943, acc: 92.7119, loss_bbox: 0.2392, loss_mask: 0.4823, loss: 1.3527 2024-06-28 11:38:17,224 - mmdet - INFO - Epoch [1][2200/7330] lr: 1.000e-04, eta: 15:02:12, time: 0.602, data_time: 0.060, memory: 12188, loss_rpn_cls: 0.1513, loss_rpn_bbox: 0.0948, loss_cls: 0.4184, acc: 92.4143, loss_bbox: 0.2490, loss_mask: 0.4808, loss: 1.3944 2024-06-28 11:38:47,360 - mmdet - INFO - Epoch [1][2250/7330] lr: 1.000e-04, eta: 15:00:46, time: 0.603, data_time: 0.070, memory: 12188, loss_rpn_cls: 0.1377, loss_rpn_bbox: 0.0893, loss_cls: 0.4012, acc: 92.5471, loss_bbox: 0.2452, loss_mask: 0.4755, loss: 1.3488 2024-06-28 11:39:17,590 - mmdet - INFO - Epoch [1][2300/7330] lr: 1.000e-04, eta: 14:59:26, time: 0.604, data_time: 0.060, memory: 12188, loss_rpn_cls: 0.1379, loss_rpn_bbox: 0.0907, loss_cls: 0.4113, acc: 92.1741, loss_bbox: 0.2581, loss_mask: 0.4822, loss: 1.3803 2024-06-28 11:39:47,306 - mmdet - INFO - Epoch [1][2350/7330] lr: 1.000e-04, eta: 14:57:50, time: 0.594, data_time: 0.056, memory: 12188, loss_rpn_cls: 0.1343, loss_rpn_bbox: 0.0901, loss_cls: 0.4031, acc: 92.4246, loss_bbox: 0.2488, loss_mask: 0.4747, loss: 1.3509 2024-06-28 11:40:17,290 - mmdet - INFO - Epoch [1][2400/7330] lr: 1.000e-04, eta: 14:56:26, time: 0.600, data_time: 0.063, memory: 12188, loss_rpn_cls: 0.1402, loss_rpn_bbox: 0.0905, loss_cls: 0.4088, acc: 92.2388, loss_bbox: 0.2551, loss_mask: 0.4741, loss: 1.3687 2024-06-28 11:40:47,737 - mmdet - INFO - Epoch [1][2450/7330] lr: 1.000e-04, eta: 14:55:20, time: 0.609, data_time: 0.069, memory: 12188, loss_rpn_cls: 0.1392, loss_rpn_bbox: 0.0867, loss_cls: 0.4152, acc: 92.0039, loss_bbox: 0.2617, loss_mask: 0.4709, loss: 1.3736 2024-06-28 11:41:17,870 - mmdet - INFO - Epoch [1][2500/7330] lr: 1.000e-04, eta: 14:54:04, time: 0.602, data_time: 0.050, memory: 12188, loss_rpn_cls: 0.1383, loss_rpn_bbox: 0.0864, loss_cls: 0.4092, acc: 92.2444, loss_bbox: 0.2533, loss_mask: 0.4587, loss: 1.3459 2024-06-28 11:41:47,858 - mmdet - INFO - Epoch [1][2550/7330] lr: 1.000e-04, eta: 14:52:46, time: 0.600, data_time: 0.057, memory: 12188, loss_rpn_cls: 0.1368, loss_rpn_bbox: 0.0869, loss_cls: 0.4091, acc: 92.2070, loss_bbox: 0.2560, loss_mask: 0.4733, loss: 1.3621 2024-06-28 11:42:18,257 - mmdet - INFO - Epoch [1][2600/7330] lr: 1.000e-04, eta: 14:51:43, time: 0.608, data_time: 0.066, memory: 12188, loss_rpn_cls: 0.1331, loss_rpn_bbox: 0.0855, loss_cls: 0.4256, acc: 91.8086, loss_bbox: 0.2686, loss_mask: 0.4665, loss: 1.3792 2024-06-28 11:42:48,703 - mmdet - INFO - Epoch [1][2650/7330] lr: 1.000e-04, eta: 14:50:43, time: 0.609, data_time: 0.056, memory: 12188, loss_rpn_cls: 0.1397, loss_rpn_bbox: 0.0883, loss_cls: 0.4211, acc: 91.8103, loss_bbox: 0.2674, loss_mask: 0.4582, loss: 1.3748 2024-06-28 11:43:19,161 - mmdet - INFO - Epoch [1][2700/7330] lr: 1.000e-04, eta: 14:49:45, time: 0.609, data_time: 0.067, memory: 12188, loss_rpn_cls: 0.1344, loss_rpn_bbox: 0.0885, loss_cls: 0.4207, acc: 91.7615, loss_bbox: 0.2718, loss_mask: 0.4683, loss: 1.3837 2024-06-28 11:43:49,043 - mmdet - INFO - Epoch [1][2750/7330] lr: 1.000e-04, eta: 14:48:29, time: 0.597, data_time: 0.076, memory: 12188, loss_rpn_cls: 0.1291, loss_rpn_bbox: 0.0840, loss_cls: 0.3960, acc: 92.2837, loss_bbox: 0.2492, loss_mask: 0.4529, loss: 1.3112 2024-06-28 11:44:19,197 - mmdet - INFO - Epoch [1][2800/7330] lr: 1.000e-04, eta: 14:47:24, time: 0.603, data_time: 0.073, memory: 12205, loss_rpn_cls: 0.1316, loss_rpn_bbox: 0.0843, loss_cls: 0.3995, acc: 92.1926, loss_bbox: 0.2566, loss_mask: 0.4605, loss: 1.3324 2024-06-28 11:44:49,603 - mmdet - INFO - Epoch [1][2850/7330] lr: 1.000e-04, eta: 14:46:26, time: 0.608, data_time: 0.068, memory: 12205, loss_rpn_cls: 0.1240, loss_rpn_bbox: 0.0849, loss_cls: 0.4072, acc: 91.7761, loss_bbox: 0.2686, loss_mask: 0.4589, loss: 1.3435 2024-06-28 11:45:19,894 - mmdet - INFO - Epoch [1][2900/7330] lr: 1.000e-04, eta: 14:45:27, time: 0.606, data_time: 0.076, memory: 12205, loss_rpn_cls: 0.1246, loss_rpn_bbox: 0.0836, loss_cls: 0.4116, acc: 91.8145, loss_bbox: 0.2682, loss_mask: 0.4570, loss: 1.3449 2024-06-28 11:45:49,868 - mmdet - INFO - Epoch [1][2950/7330] lr: 1.000e-04, eta: 14:44:20, time: 0.599, data_time: 0.048, memory: 12205, loss_rpn_cls: 0.1233, loss_rpn_bbox: 0.0868, loss_cls: 0.4190, acc: 91.6882, loss_bbox: 0.2723, loss_mask: 0.4486, loss: 1.3501 2024-06-28 11:46:20,125 - mmdet - INFO - Exp name: mask_rcnn_p2t_t_fpn_1x_coco.py 2024-06-28 11:46:20,126 - mmdet - INFO - Epoch [1][3000/7330] lr: 1.000e-04, eta: 14:43:22, time: 0.605, data_time: 0.053, memory: 12205, loss_rpn_cls: 0.1365, loss_rpn_bbox: 0.0918, loss_cls: 0.4137, acc: 91.8093, loss_bbox: 0.2653, loss_mask: 0.4551, loss: 1.3623 2024-06-28 11:46:50,812 - mmdet - INFO - Epoch [1][3050/7330] lr: 1.000e-04, eta: 14:42:37, time: 0.614, data_time: 0.079, memory: 12205, loss_rpn_cls: 0.1355, loss_rpn_bbox: 0.0849, loss_cls: 0.4174, acc: 91.6172, loss_bbox: 0.2723, loss_mask: 0.4592, loss: 1.3693 2024-06-28 11:47:20,724 - mmdet - INFO - Epoch [1][3100/7330] lr: 1.000e-04, eta: 14:41:30, time: 0.598, data_time: 0.064, memory: 12205, loss_rpn_cls: 0.1212, loss_rpn_bbox: 0.0812, loss_cls: 0.4034, acc: 91.8999, loss_bbox: 0.2626, loss_mask: 0.4489, loss: 1.3174 2024-06-28 11:47:50,744 - mmdet - INFO - Epoch [1][3150/7330] lr: 1.000e-04, eta: 14:40:29, time: 0.601, data_time: 0.055, memory: 12205, loss_rpn_cls: 0.1165, loss_rpn_bbox: 0.0844, loss_cls: 0.4120, acc: 91.8403, loss_bbox: 0.2669, loss_mask: 0.4569, loss: 1.3368 2024-06-28 11:48:20,989 - mmdet - INFO - Epoch [1][3200/7330] lr: 1.000e-04, eta: 14:39:34, time: 0.605, data_time: 0.051, memory: 12205, loss_rpn_cls: 0.1270, loss_rpn_bbox: 0.0844, loss_cls: 0.4107, acc: 91.8289, loss_bbox: 0.2673, loss_mask: 0.4512, loss: 1.3406 2024-06-28 11:48:51,312 - mmdet - INFO - Epoch [1][3250/7330] lr: 1.000e-04, eta: 14:38:41, time: 0.607, data_time: 0.062, memory: 12205, loss_rpn_cls: 0.1188, loss_rpn_bbox: 0.0823, loss_cls: 0.4272, acc: 91.3284, loss_bbox: 0.2772, loss_mask: 0.4513, loss: 1.3569 2024-06-28 11:49:21,896 - mmdet - INFO - Epoch [1][3300/7330] lr: 1.000e-04, eta: 14:37:56, time: 0.612, data_time: 0.062, memory: 12209, loss_rpn_cls: 0.1241, loss_rpn_bbox: 0.0861, loss_cls: 0.4186, acc: 91.5100, loss_bbox: 0.2764, loss_mask: 0.4489, loss: 1.3540 2024-06-28 11:49:51,933 - mmdet - INFO - Epoch [1][3350/7330] lr: 1.000e-04, eta: 14:36:58, time: 0.601, data_time: 0.065, memory: 12209, loss_rpn_cls: 0.1204, loss_rpn_bbox: 0.0778, loss_cls: 0.4036, acc: 91.8494, loss_bbox: 0.2641, loss_mask: 0.4412, loss: 1.3072 2024-06-28 11:50:22,548 - mmdet - INFO - Epoch [1][3400/7330] lr: 1.000e-04, eta: 14:36:15, time: 0.612, data_time: 0.079, memory: 12209, loss_rpn_cls: 0.1223, loss_rpn_bbox: 0.0873, loss_cls: 0.4021, acc: 91.6328, loss_bbox: 0.2706, loss_mask: 0.4399, loss: 1.3222 2024-06-28 11:50:52,561 - mmdet - INFO - Epoch [1][3450/7330] lr: 1.000e-04, eta: 14:35:18, time: 0.601, data_time: 0.057, memory: 12209, loss_rpn_cls: 0.1231, loss_rpn_bbox: 0.0858, loss_cls: 0.4159, acc: 91.4944, loss_bbox: 0.2742, loss_mask: 0.4384, loss: 1.3375 2024-06-28 11:51:22,808 - mmdet - INFO - Epoch [1][3500/7330] lr: 1.000e-04, eta: 14:34:27, time: 0.605, data_time: 0.075, memory: 12209, loss_rpn_cls: 0.1170, loss_rpn_bbox: 0.0807, loss_cls: 0.4090, acc: 91.3081, loss_bbox: 0.2821, loss_mask: 0.4330, loss: 1.3219 2024-06-28 11:51:52,746 - mmdet - INFO - Epoch [1][3550/7330] lr: 1.000e-04, eta: 14:33:29, time: 0.599, data_time: 0.065, memory: 12209, loss_rpn_cls: 0.1131, loss_rpn_bbox: 0.0830, loss_cls: 0.4228, acc: 91.2468, loss_bbox: 0.2815, loss_mask: 0.4401, loss: 1.3404 2024-06-28 11:52:23,332 - mmdet - INFO - Epoch [1][3600/7330] lr: 1.000e-04, eta: 14:32:47, time: 0.611, data_time: 0.067, memory: 12209, loss_rpn_cls: 0.1127, loss_rpn_bbox: 0.0792, loss_cls: 0.4074, acc: 91.4395, loss_bbox: 0.2758, loss_mask: 0.4381, loss: 1.3131 2024-06-28 11:52:53,993 - mmdet - INFO - Epoch [1][3650/7330] lr: 1.000e-04, eta: 14:32:07, time: 0.613, data_time: 0.069, memory: 12209, loss_rpn_cls: 0.1201, loss_rpn_bbox: 0.0853, loss_cls: 0.4202, acc: 91.3235, loss_bbox: 0.2765, loss_mask: 0.4357, loss: 1.3379 2024-06-28 11:53:24,983 - mmdet - INFO - Epoch [1][3700/7330] lr: 1.000e-04, eta: 14:31:36, time: 0.620, data_time: 0.062, memory: 12266, loss_rpn_cls: 0.1170, loss_rpn_bbox: 0.0830, loss_cls: 0.4135, acc: 91.3291, loss_bbox: 0.2796, loss_mask: 0.4282, loss: 1.3215 2024-06-28 11:53:55,602 - mmdet - INFO - Epoch [1][3750/7330] lr: 1.000e-04, eta: 14:30:55, time: 0.612, data_time: 0.059, memory: 12266, loss_rpn_cls: 0.1193, loss_rpn_bbox: 0.0877, loss_cls: 0.4186, acc: 91.2747, loss_bbox: 0.2813, loss_mask: 0.4411, loss: 1.3480 2024-06-28 11:54:25,701 - mmdet - INFO - Epoch [1][3800/7330] lr: 1.000e-04, eta: 14:30:04, time: 0.602, data_time: 0.059, memory: 12266, loss_rpn_cls: 0.1093, loss_rpn_bbox: 0.0806, loss_cls: 0.4112, acc: 91.3738, loss_bbox: 0.2797, loss_mask: 0.4277, loss: 1.3085 2024-06-28 11:54:56,387 - mmdet - INFO - Epoch [1][3850/7330] lr: 1.000e-04, eta: 14:29:26, time: 0.614, data_time: 0.079, memory: 12266, loss_rpn_cls: 0.1192, loss_rpn_bbox: 0.0829, loss_cls: 0.4058, acc: 91.3667, loss_bbox: 0.2761, loss_mask: 0.4348, loss: 1.3189 2024-06-28 11:55:26,345 - mmdet - INFO - Epoch [1][3900/7330] lr: 1.000e-04, eta: 14:28:32, time: 0.599, data_time: 0.053, memory: 12266, loss_rpn_cls: 0.1083, loss_rpn_bbox: 0.0788, loss_cls: 0.4189, acc: 90.9563, loss_bbox: 0.2902, loss_mask: 0.4271, loss: 1.3232 2024-06-28 11:55:56,472 - mmdet - INFO - Epoch [1][3950/7330] lr: 1.000e-04, eta: 14:27:42, time: 0.602, data_time: 0.053, memory: 12266, loss_rpn_cls: 0.1100, loss_rpn_bbox: 0.0787, loss_cls: 0.4040, acc: 91.6548, loss_bbox: 0.2714, loss_mask: 0.4263, loss: 1.2903 2024-06-28 11:56:26,631 - mmdet - INFO - Exp name: mask_rcnn_p2t_t_fpn_1x_coco.py 2024-06-28 11:56:26,632 - mmdet - INFO - Epoch [1][4000/7330] lr: 1.000e-04, eta: 14:26:53, time: 0.603, data_time: 0.057, memory: 12266, loss_rpn_cls: 0.1066, loss_rpn_bbox: 0.0795, loss_cls: 0.4117, acc: 91.3489, loss_bbox: 0.2771, loss_mask: 0.4295, loss: 1.3044 2024-06-28 11:56:57,148 - mmdet - INFO - Epoch [1][4050/7330] lr: 1.000e-04, eta: 14:26:13, time: 0.611, data_time: 0.063, memory: 12266, loss_rpn_cls: 0.1117, loss_rpn_bbox: 0.0805, loss_cls: 0.3896, acc: 91.6899, loss_bbox: 0.2641, loss_mask: 0.4251, loss: 1.2710 2024-06-28 11:57:27,645 - mmdet - INFO - Epoch [1][4100/7330] lr: 1.000e-04, eta: 14:25:33, time: 0.610, data_time: 0.059, memory: 12266, loss_rpn_cls: 0.1150, loss_rpn_bbox: 0.0798, loss_cls: 0.3997, acc: 91.6057, loss_bbox: 0.2682, loss_mask: 0.4236, loss: 1.2863 2024-06-28 11:57:58,323 - mmdet - INFO - Epoch [1][4150/7330] lr: 1.000e-04, eta: 14:24:56, time: 0.614, data_time: 0.071, memory: 12266, loss_rpn_cls: 0.1131, loss_rpn_bbox: 0.0818, loss_cls: 0.4169, acc: 91.0649, loss_bbox: 0.2839, loss_mask: 0.4267, loss: 1.3224 2024-06-28 11:58:28,266 - mmdet - INFO - Epoch [1][4200/7330] lr: 1.000e-04, eta: 14:24:05, time: 0.599, data_time: 0.056, memory: 12266, loss_rpn_cls: 0.1089, loss_rpn_bbox: 0.0779, loss_cls: 0.4008, acc: 91.4250, loss_bbox: 0.2780, loss_mask: 0.4108, loss: 1.2763 2024-06-28 11:58:58,554 - mmdet - INFO - Epoch [1][4250/7330] lr: 1.000e-04, eta: 14:23:21, time: 0.606, data_time: 0.058, memory: 12266, loss_rpn_cls: 0.1102, loss_rpn_bbox: 0.0802, loss_cls: 0.4001, acc: 91.4338, loss_bbox: 0.2747, loss_mask: 0.4248, loss: 1.2901 2024-06-28 11:59:28,955 - mmdet - INFO - Epoch [1][4300/7330] lr: 1.000e-04, eta: 14:22:39, time: 0.608, data_time: 0.059, memory: 12270, loss_rpn_cls: 0.1116, loss_rpn_bbox: 0.0790, loss_cls: 0.4057, acc: 91.2952, loss_bbox: 0.2829, loss_mask: 0.4237, loss: 1.3029 2024-06-28 11:59:58,443 - mmdet - INFO - Epoch [1][4350/7330] lr: 1.000e-04, eta: 14:21:41, time: 0.590, data_time: 0.058, memory: 12270, loss_rpn_cls: 0.1056, loss_rpn_bbox: 0.0752, loss_cls: 0.3863, acc: 91.7339, loss_bbox: 0.2643, loss_mask: 0.4199, loss: 1.2513 2024-06-28 12:00:28,593 - mmdet - INFO - Epoch [1][4400/7330] lr: 1.000e-04, eta: 14:20:55, time: 0.603, data_time: 0.061, memory: 12270, loss_rpn_cls: 0.1074, loss_rpn_bbox: 0.0791, loss_cls: 0.4037, acc: 91.3984, loss_bbox: 0.2763, loss_mask: 0.4253, loss: 1.2917 2024-06-28 12:00:59,078 - mmdet - INFO - Epoch [1][4450/7330] lr: 1.000e-04, eta: 14:20:16, time: 0.610, data_time: 0.065, memory: 12270, loss_rpn_cls: 0.1103, loss_rpn_bbox: 0.0763, loss_cls: 0.4041, acc: 91.4133, loss_bbox: 0.2772, loss_mask: 0.4144, loss: 1.2823 2024-06-28 12:01:29,109 - mmdet - INFO - Epoch [1][4500/7330] lr: 1.000e-04, eta: 14:19:29, time: 0.601, data_time: 0.066, memory: 12270, loss_rpn_cls: 0.1085, loss_rpn_bbox: 0.0786, loss_cls: 0.4001, acc: 91.3813, loss_bbox: 0.2749, loss_mask: 0.4104, loss: 1.2725 2024-06-28 12:01:59,983 - mmdet - INFO - Epoch [1][4550/7330] lr: 1.000e-04, eta: 14:18:57, time: 0.617, data_time: 0.058, memory: 12270, loss_rpn_cls: 0.1042, loss_rpn_bbox: 0.0748, loss_cls: 0.3814, acc: 91.6262, loss_bbox: 0.2658, loss_mask: 0.4168, loss: 1.2430 2024-06-28 12:02:29,729 - mmdet - INFO - Epoch [1][4600/7330] lr: 1.000e-04, eta: 14:18:06, time: 0.595, data_time: 0.052, memory: 12270, loss_rpn_cls: 0.1019, loss_rpn_bbox: 0.0746, loss_cls: 0.3769, acc: 91.7888, loss_bbox: 0.2609, loss_mask: 0.4138, loss: 1.2281 2024-06-28 12:03:00,213 - mmdet - INFO - Epoch [1][4650/7330] lr: 1.000e-04, eta: 14:17:28, time: 0.610, data_time: 0.055, memory: 12270, loss_rpn_cls: 0.1076, loss_rpn_bbox: 0.0806, loss_cls: 0.3975, acc: 91.2253, loss_bbox: 0.2802, loss_mask: 0.4138, loss: 1.2796 2024-06-28 12:03:30,554 - mmdet - INFO - Epoch [1][4700/7330] lr: 1.000e-04, eta: 14:16:47, time: 0.607, data_time: 0.055, memory: 12270, loss_rpn_cls: 0.0998, loss_rpn_bbox: 0.0733, loss_cls: 0.3934, acc: 91.5378, loss_bbox: 0.2726, loss_mask: 0.4144, loss: 1.2535 2024-06-28 12:04:01,349 - mmdet - INFO - Epoch [1][4750/7330] lr: 1.000e-04, eta: 14:16:15, time: 0.616, data_time: 0.065, memory: 12270, loss_rpn_cls: 0.1106, loss_rpn_bbox: 0.0819, loss_cls: 0.4025, acc: 91.0559, loss_bbox: 0.2888, loss_mask: 0.4156, loss: 1.2994 2024-06-28 12:04:31,903 - mmdet - INFO - Epoch [1][4800/7330] lr: 1.000e-04, eta: 14:15:39, time: 0.611, data_time: 0.060, memory: 12270, loss_rpn_cls: 0.1050, loss_rpn_bbox: 0.0793, loss_cls: 0.3741, acc: 91.8142, loss_bbox: 0.2614, loss_mask: 0.4163, loss: 1.2362 2024-06-28 12:05:02,786 - mmdet - INFO - Epoch [1][4850/7330] lr: 1.000e-04, eta: 14:15:08, time: 0.618, data_time: 0.063, memory: 12270, loss_rpn_cls: 0.1132, loss_rpn_bbox: 0.0774, loss_cls: 0.3995, acc: 91.2314, loss_bbox: 0.2815, loss_mask: 0.4122, loss: 1.2838 2024-06-28 12:05:33,295 - mmdet - INFO - Epoch [1][4900/7330] lr: 1.000e-04, eta: 14:14:31, time: 0.610, data_time: 0.074, memory: 12270, loss_rpn_cls: 0.1096, loss_rpn_bbox: 0.0846, loss_cls: 0.3925, acc: 91.3843, loss_bbox: 0.2745, loss_mask: 0.4128, loss: 1.2740 2024-06-28 12:06:04,466 - mmdet - INFO - Epoch [1][4950/7330] lr: 1.000e-04, eta: 14:14:06, time: 0.624, data_time: 0.067, memory: 12270, loss_rpn_cls: 0.1095, loss_rpn_bbox: 0.0826, loss_cls: 0.3899, acc: 91.1809, loss_bbox: 0.2812, loss_mask: 0.4132, loss: 1.2764 2024-06-28 12:06:34,281 - mmdet - INFO - Exp name: mask_rcnn_p2t_t_fpn_1x_coco.py 2024-06-28 12:06:34,281 - mmdet - INFO - Epoch [1][5000/7330] lr: 1.000e-04, eta: 14:13:17, time: 0.596, data_time: 0.055, memory: 12270, loss_rpn_cls: 0.0990, loss_rpn_bbox: 0.0716, loss_cls: 0.3848, acc: 91.6365, loss_bbox: 0.2685, loss_mask: 0.4018, loss: 1.2257 2024-06-28 12:07:04,784 - mmdet - INFO - Epoch [1][5050/7330] lr: 1.000e-04, eta: 14:12:40, time: 0.610, data_time: 0.073, memory: 12270, loss_rpn_cls: 0.1052, loss_rpn_bbox: 0.0777, loss_cls: 0.3932, acc: 91.3535, loss_bbox: 0.2759, loss_mask: 0.4092, loss: 1.2612 2024-06-28 12:07:34,520 - mmdet - INFO - Epoch [1][5100/7330] lr: 1.000e-04, eta: 14:11:52, time: 0.595, data_time: 0.061, memory: 12270, loss_rpn_cls: 0.1004, loss_rpn_bbox: 0.0728, loss_cls: 0.3953, acc: 91.4512, loss_bbox: 0.2724, loss_mask: 0.4071, loss: 1.2480 2024-06-28 12:08:06,206 - mmdet - INFO - Epoch [1][5150/7330] lr: 1.000e-04, eta: 14:11:34, time: 0.634, data_time: 0.068, memory: 12270, loss_rpn_cls: 0.1050, loss_rpn_bbox: 0.0785, loss_cls: 0.3846, acc: 91.4148, loss_bbox: 0.2773, loss_mask: 0.4129, loss: 1.2584 2024-06-28 12:08:36,409 - mmdet - INFO - Epoch [1][5200/7330] lr: 1.000e-04, eta: 14:10:53, time: 0.604, data_time: 0.083, memory: 12270, loss_rpn_cls: 0.1108, loss_rpn_bbox: 0.0801, loss_cls: 0.3938, acc: 91.1931, loss_bbox: 0.2773, loss_mask: 0.4049, loss: 1.2669 2024-06-28 12:09:07,343 - mmdet - INFO - Epoch [1][5250/7330] lr: 1.000e-04, eta: 14:10:24, time: 0.619, data_time: 0.062, memory: 12270, loss_rpn_cls: 0.1035, loss_rpn_bbox: 0.0785, loss_cls: 0.4022, acc: 90.9871, loss_bbox: 0.2899, loss_mask: 0.4113, loss: 1.2855 2024-06-28 12:09:38,533 - mmdet - INFO - Epoch [1][5300/7330] lr: 1.000e-04, eta: 14:09:58, time: 0.624, data_time: 0.068, memory: 12270, loss_rpn_cls: 0.1021, loss_rpn_bbox: 0.0774, loss_cls: 0.4045, acc: 90.9729, loss_bbox: 0.2892, loss_mask: 0.4213, loss: 1.2945 2024-06-28 12:10:08,941 - mmdet - INFO - Epoch [1][5350/7330] lr: 1.000e-04, eta: 14:09:21, time: 0.608, data_time: 0.072, memory: 12270, loss_rpn_cls: 0.0992, loss_rpn_bbox: 0.0764, loss_cls: 0.3962, acc: 91.1799, loss_bbox: 0.2873, loss_mask: 0.4067, loss: 1.2657 2024-06-28 12:10:39,895 - mmdet - INFO - Epoch [1][5400/7330] lr: 1.000e-04, eta: 14:08:52, time: 0.619, data_time: 0.052, memory: 12270, loss_rpn_cls: 0.0980, loss_rpn_bbox: 0.0744, loss_cls: 0.3931, acc: 91.3042, loss_bbox: 0.2799, loss_mask: 0.4083, loss: 1.2537 2024-06-28 12:11:10,687 - mmdet - INFO - Epoch [1][5450/7330] lr: 1.000e-04, eta: 14:08:20, time: 0.616, data_time: 0.058, memory: 12270, loss_rpn_cls: 0.1037, loss_rpn_bbox: 0.0800, loss_cls: 0.3872, acc: 91.2407, loss_bbox: 0.2811, loss_mask: 0.4033, loss: 1.2553 2024-06-28 12:11:41,183 - mmdet - INFO - Epoch [1][5500/7330] lr: 1.000e-04, eta: 14:07:44, time: 0.610, data_time: 0.056, memory: 12270, loss_rpn_cls: 0.0998, loss_rpn_bbox: 0.0779, loss_cls: 0.3890, acc: 91.2046, loss_bbox: 0.2835, loss_mask: 0.4038, loss: 1.2539 2024-06-28 12:12:11,571 - mmdet - INFO - Epoch [1][5550/7330] lr: 1.000e-04, eta: 14:07:06, time: 0.608, data_time: 0.056, memory: 12270, loss_rpn_cls: 0.1006, loss_rpn_bbox: 0.0779, loss_cls: 0.3894, acc: 91.1643, loss_bbox: 0.2829, loss_mask: 0.4044, loss: 1.2552 2024-06-28 12:12:42,093 - mmdet - INFO - Epoch [1][5600/7330] lr: 1.000e-04, eta: 14:06:31, time: 0.610, data_time: 0.055, memory: 12270, loss_rpn_cls: 0.1027, loss_rpn_bbox: 0.0736, loss_cls: 0.3839, acc: 91.3743, loss_bbox: 0.2741, loss_mask: 0.3935, loss: 1.2278 2024-06-28 12:13:13,085 - mmdet - INFO - Epoch [1][5650/7330] lr: 1.000e-04, eta: 14:06:02, time: 0.620, data_time: 0.063, memory: 12270, loss_rpn_cls: 0.1087, loss_rpn_bbox: 0.0821, loss_cls: 0.4010, acc: 91.1057, loss_bbox: 0.2832, loss_mask: 0.4041, loss: 1.2791 2024-06-28 12:13:43,824 - mmdet - INFO - Epoch [1][5700/7330] lr: 1.000e-04, eta: 14:05:30, time: 0.614, data_time: 0.064, memory: 12270, loss_rpn_cls: 0.0987, loss_rpn_bbox: 0.0753, loss_cls: 0.3915, acc: 90.9187, loss_bbox: 0.2893, loss_mask: 0.3931, loss: 1.2478 2024-06-28 12:14:14,145 - mmdet - INFO - Epoch [1][5750/7330] lr: 1.000e-04, eta: 14:04:52, time: 0.607, data_time: 0.064, memory: 12270, loss_rpn_cls: 0.0988, loss_rpn_bbox: 0.0786, loss_cls: 0.3956, acc: 90.9712, loss_bbox: 0.2855, loss_mask: 0.4031, loss: 1.2617 2024-06-28 12:14:45,188 - mmdet - INFO - Epoch [1][5800/7330] lr: 1.000e-04, eta: 14:04:24, time: 0.621, data_time: 0.063, memory: 12270, loss_rpn_cls: 0.1044, loss_rpn_bbox: 0.0808, loss_cls: 0.4005, acc: 90.8965, loss_bbox: 0.2912, loss_mask: 0.4014, loss: 1.2784 2024-06-28 12:15:15,837 - mmdet - INFO - Epoch [1][5850/7330] lr: 1.000e-04, eta: 14:03:50, time: 0.613, data_time: 0.058, memory: 12270, loss_rpn_cls: 0.0975, loss_rpn_bbox: 0.0734, loss_cls: 0.3769, acc: 91.3452, loss_bbox: 0.2750, loss_mask: 0.3893, loss: 1.2121 2024-06-28 12:15:46,774 - mmdet - INFO - Epoch [1][5900/7330] lr: 1.000e-04, eta: 14:03:21, time: 0.619, data_time: 0.076, memory: 12300, loss_rpn_cls: 0.0985, loss_rpn_bbox: 0.0810, loss_cls: 0.4104, acc: 90.4792, loss_bbox: 0.3008, loss_mask: 0.4010, loss: 1.2918 2024-06-28 12:16:17,183 - mmdet - INFO - Epoch [1][5950/7330] lr: 1.000e-04, eta: 14:02:44, time: 0.608, data_time: 0.063, memory: 12300, loss_rpn_cls: 0.0938, loss_rpn_bbox: 0.0728, loss_cls: 0.3806, acc: 91.2212, loss_bbox: 0.2830, loss_mask: 0.4003, loss: 1.2305 2024-06-28 12:16:47,542 - mmdet - INFO - Exp name: mask_rcnn_p2t_t_fpn_1x_coco.py 2024-06-28 12:16:47,542 - mmdet - INFO - Epoch [1][6000/7330] lr: 1.000e-04, eta: 14:02:07, time: 0.607, data_time: 0.059, memory: 12300, loss_rpn_cls: 0.0973, loss_rpn_bbox: 0.0754, loss_cls: 0.3887, acc: 91.2070, loss_bbox: 0.2811, loss_mask: 0.3935, loss: 1.2360 2024-06-28 12:17:18,504 - mmdet - INFO - Epoch [1][6050/7330] lr: 1.000e-04, eta: 14:01:38, time: 0.619, data_time: 0.061, memory: 12300, loss_rpn_cls: 0.0953, loss_rpn_bbox: 0.0771, loss_cls: 0.3866, acc: 91.1621, loss_bbox: 0.2809, loss_mask: 0.3967, loss: 1.2366 2024-06-28 12:17:49,066 - mmdet - INFO - Epoch [1][6100/7330] lr: 1.000e-04, eta: 14:01:04, time: 0.611, data_time: 0.064, memory: 12300, loss_rpn_cls: 0.0940, loss_rpn_bbox: 0.0761, loss_cls: 0.3767, acc: 91.2109, loss_bbox: 0.2790, loss_mask: 0.3861, loss: 1.2118 2024-06-28 12:18:19,413 - mmdet - INFO - Epoch [1][6150/7330] lr: 1.000e-04, eta: 14:00:27, time: 0.607, data_time: 0.070, memory: 12300, loss_rpn_cls: 0.0933, loss_rpn_bbox: 0.0708, loss_cls: 0.3687, acc: 91.4912, loss_bbox: 0.2720, loss_mask: 0.3959, loss: 1.2007 2024-06-28 12:18:50,163 - mmdet - INFO - Epoch [1][6200/7330] lr: 1.000e-04, eta: 13:59:55, time: 0.615, data_time: 0.066, memory: 12300, loss_rpn_cls: 0.0973, loss_rpn_bbox: 0.0809, loss_cls: 0.3961, acc: 90.8740, loss_bbox: 0.2886, loss_mask: 0.3977, loss: 1.2606 2024-06-28 12:19:20,887 - mmdet - INFO - Epoch [1][6250/7330] lr: 1.000e-04, eta: 13:59:23, time: 0.614, data_time: 0.072, memory: 12300, loss_rpn_cls: 0.0899, loss_rpn_bbox: 0.0753, loss_cls: 0.3787, acc: 91.1755, loss_bbox: 0.2801, loss_mask: 0.3919, loss: 1.2158 2024-06-28 12:19:51,659 - mmdet - INFO - Epoch [1][6300/7330] lr: 1.000e-04, eta: 13:58:51, time: 0.616, data_time: 0.077, memory: 12300, loss_rpn_cls: 0.0940, loss_rpn_bbox: 0.0741, loss_cls: 0.3841, acc: 91.1921, loss_bbox: 0.2786, loss_mask: 0.3944, loss: 1.2253 2024-06-28 12:20:21,850 - mmdet - INFO - Epoch [1][6350/7330] lr: 1.000e-04, eta: 13:58:12, time: 0.604, data_time: 0.059, memory: 12300, loss_rpn_cls: 0.0948, loss_rpn_bbox: 0.0765, loss_cls: 0.3764, acc: 91.2471, loss_bbox: 0.2771, loss_mask: 0.3880, loss: 1.2129 2024-06-28 12:20:51,653 - mmdet - INFO - Epoch [1][6400/7330] lr: 1.000e-04, eta: 13:57:29, time: 0.596, data_time: 0.048, memory: 12300, loss_rpn_cls: 0.0883, loss_rpn_bbox: 0.0735, loss_cls: 0.3695, acc: 91.4307, loss_bbox: 0.2746, loss_mask: 0.3972, loss: 1.2031 2024-06-28 12:21:22,642 - mmdet - INFO - Epoch [1][6450/7330] lr: 1.000e-04, eta: 13:57:00, time: 0.619, data_time: 0.057, memory: 12306, loss_rpn_cls: 0.0963, loss_rpn_bbox: 0.0714, loss_cls: 0.3648, acc: 91.4187, loss_bbox: 0.2767, loss_mask: 0.3918, loss: 1.2011 2024-06-28 12:21:53,541 - mmdet - INFO - Epoch [1][6500/7330] lr: 1.000e-04, eta: 13:56:30, time: 0.618, data_time: 0.070, memory: 12306, loss_rpn_cls: 0.0949, loss_rpn_bbox: 0.0750, loss_cls: 0.3785, acc: 91.1521, loss_bbox: 0.2824, loss_mask: 0.3890, loss: 1.2197 2024-06-28 12:22:23,287 - mmdet - INFO - Epoch [1][6550/7330] lr: 1.000e-04, eta: 13:55:46, time: 0.595, data_time: 0.051, memory: 12306, loss_rpn_cls: 0.0913, loss_rpn_bbox: 0.0747, loss_cls: 0.3605, acc: 91.6367, loss_bbox: 0.2694, loss_mask: 0.3970, loss: 1.1930 2024-06-28 12:22:54,083 - mmdet - INFO - Epoch [1][6600/7330] lr: 1.000e-04, eta: 13:55:16, time: 0.616, data_time: 0.059, memory: 12306, loss_rpn_cls: 0.0931, loss_rpn_bbox: 0.0742, loss_cls: 0.3751, acc: 91.2188, loss_bbox: 0.2823, loss_mask: 0.3917, loss: 1.2165 2024-06-28 12:23:24,971 - mmdet - INFO - Epoch [1][6650/7330] lr: 1.000e-04, eta: 13:54:46, time: 0.618, data_time: 0.063, memory: 12306, loss_rpn_cls: 0.0915, loss_rpn_bbox: 0.0745, loss_cls: 0.3792, acc: 91.0356, loss_bbox: 0.2859, loss_mask: 0.3940, loss: 1.2252 2024-06-28 12:23:55,300 - mmdet - INFO - Epoch [1][6700/7330] lr: 1.000e-04, eta: 13:54:10, time: 0.606, data_time: 0.046, memory: 12306, loss_rpn_cls: 0.0944, loss_rpn_bbox: 0.0782, loss_cls: 0.3658, acc: 91.3171, loss_bbox: 0.2766, loss_mask: 0.3916, loss: 1.2066 2024-06-28 12:24:26,432 - mmdet - INFO - Epoch [1][6750/7330] lr: 1.000e-04, eta: 13:53:43, time: 0.623, data_time: 0.074, memory: 12306, loss_rpn_cls: 0.0970, loss_rpn_bbox: 0.0760, loss_cls: 0.3887, acc: 90.7852, loss_bbox: 0.2895, loss_mask: 0.3863, loss: 1.2377 2024-06-28 12:24:57,925 - mmdet - INFO - Epoch [1][6800/7330] lr: 1.000e-04, eta: 13:53:20, time: 0.630, data_time: 0.071, memory: 12306, loss_rpn_cls: 0.0960, loss_rpn_bbox: 0.0798, loss_cls: 0.3931, acc: 90.9031, loss_bbox: 0.2932, loss_mask: 0.3921, loss: 1.2543 2024-06-28 12:25:29,106 - mmdet - INFO - Epoch [1][6850/7330] lr: 1.000e-04, eta: 13:52:54, time: 0.623, data_time: 0.063, memory: 12306, loss_rpn_cls: 0.1014, loss_rpn_bbox: 0.0768, loss_cls: 0.3955, acc: 90.5461, loss_bbox: 0.2971, loss_mask: 0.3866, loss: 1.2575 2024-06-28 12:25:59,623 - mmdet - INFO - Epoch [1][6900/7330] lr: 1.000e-04, eta: 13:52:20, time: 0.610, data_time: 0.067, memory: 12306, loss_rpn_cls: 0.0920, loss_rpn_bbox: 0.0777, loss_cls: 0.3704, acc: 91.3191, loss_bbox: 0.2755, loss_mask: 0.3851, loss: 1.2006 2024-06-28 12:26:30,055 - mmdet - INFO - Epoch [1][6950/7330] lr: 1.000e-04, eta: 13:51:45, time: 0.609, data_time: 0.055, memory: 12306, loss_rpn_cls: 0.0865, loss_rpn_bbox: 0.0717, loss_cls: 0.3717, acc: 91.0376, loss_bbox: 0.2882, loss_mask: 0.3828, loss: 1.2008 2024-06-28 12:27:00,462 - mmdet - INFO - Exp name: mask_rcnn_p2t_t_fpn_1x_coco.py 2024-06-28 12:27:00,462 - mmdet - INFO - Epoch [1][7000/7330] lr: 1.000e-04, eta: 13:51:09, time: 0.608, data_time: 0.047, memory: 12306, loss_rpn_cls: 0.0941, loss_rpn_bbox: 0.0777, loss_cls: 0.3628, acc: 91.4993, loss_bbox: 0.2765, loss_mask: 0.3887, loss: 1.1997 2024-06-28 12:27:30,847 - mmdet - INFO - Epoch [1][7050/7330] lr: 1.000e-04, eta: 13:50:34, time: 0.608, data_time: 0.069, memory: 12306, loss_rpn_cls: 0.0941, loss_rpn_bbox: 0.0759, loss_cls: 0.3753, acc: 91.1187, loss_bbox: 0.2839, loss_mask: 0.3852, loss: 1.2144 2024-06-28 12:28:01,335 - mmdet - INFO - Epoch [1][7100/7330] lr: 1.000e-04, eta: 13:49:59, time: 0.610, data_time: 0.062, memory: 12306, loss_rpn_cls: 0.0859, loss_rpn_bbox: 0.0708, loss_cls: 0.3743, acc: 91.1028, loss_bbox: 0.2843, loss_mask: 0.3803, loss: 1.1956 2024-06-28 12:28:31,917 - mmdet - INFO - Epoch [1][7150/7330] lr: 1.000e-04, eta: 13:49:26, time: 0.611, data_time: 0.055, memory: 12306, loss_rpn_cls: 0.0891, loss_rpn_bbox: 0.0769, loss_cls: 0.3758, acc: 90.9353, loss_bbox: 0.2924, loss_mask: 0.3970, loss: 1.2313 2024-06-28 12:29:02,365 - mmdet - INFO - Epoch [1][7200/7330] lr: 1.000e-04, eta: 13:48:51, time: 0.609, data_time: 0.061, memory: 12306, loss_rpn_cls: 0.0910, loss_rpn_bbox: 0.0726, loss_cls: 0.3717, acc: 91.1599, loss_bbox: 0.2807, loss_mask: 0.3784, loss: 1.1944 2024-06-28 12:29:32,734 - mmdet - INFO - Epoch [1][7250/7330] lr: 1.000e-04, eta: 13:48:16, time: 0.608, data_time: 0.060, memory: 12306, loss_rpn_cls: 0.0923, loss_rpn_bbox: 0.0708, loss_cls: 0.3597, acc: 91.5747, loss_bbox: 0.2692, loss_mask: 0.3872, loss: 1.1792 2024-06-28 12:30:03,308 - mmdet - INFO - Epoch [1][7300/7330] lr: 1.000e-04, eta: 13:47:43, time: 0.611, data_time: 0.052, memory: 12306, loss_rpn_cls: 0.0887, loss_rpn_bbox: 0.0738, loss_cls: 0.3838, acc: 90.7783, loss_bbox: 0.2963, loss_mask: 0.3826, loss: 1.2252 2024-06-28 12:30:30,896 - mmdet - INFO - Saving checkpoint at 1 epochs 2024-06-28 12:32:14,094 - mmdet - INFO - Evaluating bbox... 2024-06-28 12:33:12,087 - mmdet - INFO - Evaluating segm... 2024-06-28 12:34:16,985 - mmdet - INFO - Exp name: mask_rcnn_p2t_t_fpn_1x_coco.py 2024-06-28 12:34:16,986 - mmdet - INFO - Epoch(val) [1][625] bbox_mAP: 0.0720, bbox_mAP_50: 0.1600, bbox_mAP_75: 0.0530, bbox_mAP_s: 0.0290, bbox_mAP_m: 0.0690, bbox_mAP_l: 0.1070, bbox_mAP_copypaste: 0.072 0.160 0.053 0.029 0.069 0.107, segm_mAP: 0.0770, segm_mAP_50: 0.1500, segm_mAP_75: 0.0710, segm_mAP_s: 0.0220, segm_mAP_m: 0.0730, segm_mAP_l: 0.1280, segm_mAP_copypaste: 0.077 0.150 0.071 0.022 0.073 0.128

yuhuan-wu commented 4 months ago

It is obvious that you did not successfully load the pretrained weights, since the loss is much larger than that in my logs. Second, I did not see any logs showing that the weights are successfully loaded. Format is like [Time] [Loaded checkpoints/pretrained weights] [$MODEL_PATH]

Moreover, please use code format to display your logs, which will be much easier to read. Do NOT place all of them as most information is useless.

Genbao-Xu commented 4 months ago

Thanks for the answer,Please if I downgrade the version of mmdet to 2.8.0, don't know if it will fix the issue (Because I downloaded mmdet2.14.0 according to the requirements in your README, and also downloaded the pretrained model on ImageNet on the network disk, and also put it in pretrained file). Thank you!

Genbao-Xu commented 4 months ago

I downgraded the version of mmdet to 2.8.0 and the following log shows that the pretrained model was read, but at the end there is an erorr, it seems that the version of mmdet and mmcv is too low? (NumClassCheckHook is not in the hook registry) My mmdet=2.8.0, mmcv=1.3.8, timm=0.4.12, pytorch=1.8

2024-07-22 14:23:48,510 - mmdet - INFO - load model from: pretrained/p2t_small.pth INFO:mmdet:load model from: pretrained/p2t_small.pth 2024-07-22 14:23:48,511 - mmdet - INFO - Use load_from_local loader INFO:mmdet:Use load_from_local loader 2024-07-22 14:23:48,626 - mmdet - WARNING - The model and loaded state dict do not match exactly unexpected key in source state_dict: head.weight, head.bias WARNING:mmdet:The model and loaded state dict do not match exactly unexpected key in source state_dict: head.weight, head.bias Traceback (most recent call last): File "./train.py", line 184, in <module> main() File "./train.py", line 180, in main meta=meta) File "/home/zkyd/anaconda3/envs/xgb/lib/python3.7/site-packages/mmdet/apis/train.py", line 143, in train_detector hook = build_from_cfg(hook_cfg, HOOKS) File "/home/zkyd/anaconda3/envs/xgb/lib/python3.7/site-packages/mmcv/utils/registry.py", line 44, in build_from_cfg f'{obj_type} is not in the {registry.name} registry') **KeyError: 'NumClassCheckHook is not in the hook registry'**

yuhuan-wu commented 4 months ago

For mmdet errors, please go to mmdet repository for query.

I think there is a simple solution: add self.init_weights($THE_PRETRAINED_MODEL_PATH) at the end of __init__ function: https://github.com/yuhuan-wu/P2T/blob/8811157e77bcca6aecf0206998de29373eaa872d/detection/p2t.py#L210-L219

It can manually load the pretrained model without relying the config file. Please replace $THE_PRETRAINED_MODEL_PATH with the exact pretrained model path.

Genbao-Xu commented 4 months ago

Thank you very much for the answer, I've solved this issue. If I want to train an improved model based on p2t in object detection, do I need to retrain the improved model on ImageNet and then load the improved pretrained model to object detection task? Thank you!

yuhuan-wu commented 4 months ago

I think it depends on how you improved P2T. If such improved version requires re-pretraining, you could do so. Otherwise it is not mandantory.