test_input = torch.from_numpy(X_test)
test_label = torch.from_numpy(y_test)
# create the data loader for the test set
testset = torch.utils.data.TensorDataset(test_input, test_label)
testloader = torch.utils.data.DataLoader(testset, batch_size=opt.batch_size, shuffle=False, num_workers=0)
cnn.eval()
def train_SCU(X_train, y_train): train_input = torch.from_numpy(X_train) train_label = torch.from_numpy(y_train) trainset = torch.utils.data.TensorDataset(train_input, train_label) trainloader = torch.utils.data.DataLoader(trainset, batch_size=opt.batch_size, shuffle=True, num_workers=0) cnn = SCU(opt, num_classes).to(device) cnn.train() ce_loss = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(cnn.parameters(), lr=opt.lr, weight_decay=opt.w_decay)
AttributeError: 'tuple' object has no attribute 'eval'