yuxng / PoseCNN

A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes
https://rse-lab.cs.washington.edu/projects/posecnn/
MIT License
765 stars 245 forks source link

synthesizer argument error (python argument type does not match c++) #37

Open mohammad200h opened 6 years ago

mohammad200h commented 6 years ago

Hi I was trying to run the training shell script: ./experiments/scripts/lov_color_2d_train.sh 0 When it runs it stops at render function and gives me this error: I guess it has problems matching str in python to string in c++ which could be cython error. " Exception in thread Thread-1: Traceback (most recent call last): File "/usr/lib/python2.7/threading.py", line 801, in bootstrap_inner self.run() File "/usr/lib/python2.7/threading.py", line 754, in run self.target(*self.args, **self.__kwargs) File "./tools/train_net.py", line 160, in render synthesizer = libsynthesizer.Synthesizer(cfg.CAD, cfg.POSE ) ArgumentError: Python argument types in Synthesizer.init(Synthesizer, str, str) did not match C++ signature: init__(_object*, std::string, std::string) "

The whole log file is attached:`+ echo Logging output to experiments/logs/lov_color_2d_train.txt.2018-07-10_15-39-28 Logging output to experiments/logs/lov_color_2d_train.txt.2018-07-10_15-39-28

Tensor("fifo_queue_Dequeue:0", dtype=float32) Tensor("conv5_3/conv5_3:0", shape=(?, ?, ?, 512), dtype=float32) Tensor("conv4_3/conv4_3:0", shape=(?, ?, ?, 512), dtype=float32) Tensor("score_conv4/score_conv4:0", shape=(?, ?, ?, 64), dtype=float32) Tensor("upscore_conv5_1:0", shape=(?, ?, ?, 64), dtype=float32) Tensor("upscore_1:0", shape=(?, ?, ?, 64), dtype=float32) Tensor("score/score:0", shape=(?, ?, ?, 22), dtype=float32) Tensor("div:0", shape=(?, ?, ?, 22), dtype=float32) Tensor("fifo_queue_Dequeue:1", dtype=int32) Tensor("conv5_3/conv5_3:0", shape=(?, ?, ?, 512), dtype=float32) Tensor("conv4_3/conv4_3:0", shape=(?, ?, ?, 512), dtype=float32) Tensor("score_conv4_vertex/BiasAdd:0", shape=(?, ?, ?, 128), dtype=float32) Tensor("upscore_conv5_vertex_1:0", shape=(?, ?, ?, 128), dtype=float32) Tensor("ToInt32:0", shape=(?, ?, ?), dtype=int32) Tensor("vertex_pred/BiasAdd:0", shape=(?, ?, ?, 66), dtype=float32) Tensor("fifo_queue_Dequeue:6", dtype=float32) Tensor("fifo_queue_Dequeue:7", dtype=float32) Tensor("fifo_queue_Dequeue:5", dtype=float32) Tensor("conv5_3/conv5_3:0", shape=(?, ?, ?, 512), dtype=float32) Tensor("hough:0", shape=(?, 7), dtype=float32) Tensor("conv4_3/conv4_3:0", shape=(?, ?, ?, 512), dtype=float32) Tensor("hough:0", shape=(?, 7), dtype=float32) RoiPool(top_data=<tf.Tensor 'pool5:0' shape=(?, 7, 7, 512) dtype=float32>, argmax=<tf.Tensor 'pool5:1' shape=(?, 7, 7, 512) dtype=int32>) RoiPool(top_data=<tf.Tensor 'pool4_1:0' shape=(?, 7, 7, 512) dtype=float32>, argmax=<tf.Tensor 'pool4_1:1' shape=(?, 7, 7, 512) dtype=int32>) Tensor("poses_tanh:0", shape=(?, 88), dtype=float32) Tensor("hough:3", shape=(?, 88), dtype=float32) Tensor("poses_pred:0", shape=(?, 88), dtype=float32) Tensor("hough:2", shape=(?, 88), dtype=float32) Tensor("hough:3", shape=(?, 88), dtype=float32) Tensor("fifo_queue_Dequeue:8", dtype=float32) Tensor("fifo_queue_Dequeue:9", dtype=float32) Use network vgg16_convs in training 2018-07-10 15:39:32.228268: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX 2018-07-10 15:39:32.337709: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Found device 0 with properties: name: TITAN X (Pascal) major: 6 minor: 1 memoryClockRate(GHz): 1.531 pciBusID: 0000:02:00.0 totalMemory: 11.90GiB freeMemory: 11.36GiB 2018-07-10 15:39:32.337748: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: TITAN X (Pascal), pci bus id: 0000:02:00.0, compute capability: 6.1) lov_train backgrounds loaded from /home/mamad/PoseCNN/data/cache/backgrounds.pkl lov_train backgrounds depth loaded from /home/mamad/PoseCNN/data/cache/backgrounds_depth.pkl Solving... ('Layer.py back', []) Loading pretrained model weights from data/imagenet_models/vgg16.npy conv5_1 conv5_1 weights assigned conv5_1 biases assigned fc6 fc6 weights assigned fc6 biases assigned conv5_3 conv5_3 weights assigned conv5_3 biases assigned fc7 fc7 weights assigned fc7 biases assigned fc8 conv5_2 conv5_2 weights assigned conv5_2 biases assigned conv4_1 conv4_1 weights assigned conv4_1 biases assigned conv4_2 conv4_2 weights assigned conv4_2 biases assigned conv4_3 conv4_3 weights assigned conv4_3 biases assigned conv3_3 conv3_3 weights assigned conv3_3 biases assigned conv3_2 conv3_2 weights assigned conv3_2 biases assigned conv3_1 conv3_1 weights assigned conv3_1 biases assigned conv1_1 conv1_1 weights assigned conv1_1 biases assigned conv1_2 conv1_2 weights assigned conv1_2 biases assigned conv2_2 conv2_2 weights assigned conv2_2 biases assigned conv2_1 conv2_1 weights assigned conv2_1 biases assigned`

renjiahao0928 commented 3 years ago

same error,have you solved it?

mohammad200h commented 3 years ago

Nope. Sorry:(