Open karandogra987 opened 2 months ago
Hi @karandogra987,
Thanks for the question. You can get the CARMA parameters of your kernel using a_kernel.get_parameter_vector()
, which then is used to substitute best_fit_carma
argument to the plot_pred_lc
function. Nonetheless, I implemented a new function get_carma_parameter()
for the CARMA_term
. Either method should work for you. To get the new function to work, you need to reinstall EzTao from the github using:
pip install git+https://github.com/ywx649999311/EzTao.git
plot predicted time series
t_pred = np.linspace(0, 365*6, 2000)
get best-fit in CARMA space
best_fit_kernel = DRW_term(*np.log(best_fit)) best_fit_arma = best_fit_kernel.get_carma_parameter()
plot_pred_lc(t, y, yerr, best_fit_arma, 1, t_pred)
Above is the code used to plot best fit for a DRW model as shown in the tutorial. How to use this module to plot higher order CARMA as CARMA_term has no module named get.carma.parameters() unlike DRW_term?