Closed AllenBootung closed 3 years ago
I copied sketcher/Sketcher.ipynb to train the model https://colab.research.google.com/github/zaidalyafeai/zaidalyafeai.github.io/blob/master/sketcher/Sketcher.ipynb but module 'tensorflow._api.v2.train' has no attribute 'AdamOptimizer so I changed
adam = tf.train.AdamOptimizer() to adam = tf.optimizers.Adam()
https://github.com/AllenBootung/zaidalyafeai.github.io/blob/master/Sketcher.ipynb After this, I still get ValueError: Shapes (256, 4) and (256, 100) are incompatible How to fix this? Thank you.
model.fit(x = x_train, y = y_train, validation_split=0.1, batch_size = 256, verbose=2, epochs=5)
Epoch 1/5 --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-42-d96732c3590f> in <module>() ----> 1 model.fit(x = x_train, y = y_train, validation_split=0.1, batch_size = 256, verbose=2, epochs=5) 9 frames /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing) 1098 _r=1): 1099 callbacks.on_train_batch_begin(step) -> 1100 tmp_logs = self.train_function(iterator) 1101 if data_handler.should_sync: 1102 context.async_wait() /usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds) 826 tracing_count = self.experimental_get_tracing_count() 827 with trace.Trace(self._name) as tm: --> 828 result = self._call(*args, **kwds) 829 compiler = "xla" if self._experimental_compile else "nonXla" 830 new_tracing_count = self.experimental_get_tracing_count() /usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds) 869 # This is the first call of __call__, so we have to initialize. 870 initializers = [] --> 871 self._initialize(args, kwds, add_initializers_to=initializers) 872 finally: 873 # At this point we know that the initialization is complete (or less /usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to) 724 self._concrete_stateful_fn = ( 725 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access --> 726 *args, **kwds)) 727 728 def invalid_creator_scope(*unused_args, **unused_kwds): /usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs) 2967 args, kwargs = None, None 2968 with self._lock: -> 2969 graph_function, _ = self._maybe_define_function(args, kwargs) 2970 return graph_function 2971 /usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs) 3359 3360 self._function_cache.missed.add(call_context_key) -> 3361 graph_function = self._create_graph_function(args, kwargs) 3362 self._function_cache.primary[cache_key] = graph_function 3363 /usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes) 3204 arg_names=arg_names, 3205 override_flat_arg_shapes=override_flat_arg_shapes, -> 3206 capture_by_value=self._capture_by_value), 3207 self._function_attributes, 3208 function_spec=self.function_spec, /usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes) 988 _, original_func = tf_decorator.unwrap(python_func) 989 --> 990 func_outputs = python_func(*func_args, **func_kwargs) 991 992 # invariant: `func_outputs` contains only Tensors, CompositeTensors, /usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds) 632 xla_context.Exit() 633 else: --> 634 out = weak_wrapped_fn().__wrapped__(*args, **kwds) 635 return out 636 /usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs) 975 except Exception as e: # pylint:disable=broad-except 976 if hasattr(e, "ag_error_metadata"): --> 977 raise e.ag_error_metadata.to_exception(e) 978 else: 979 raise ValueError: in user code: /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:805 train_function * return step_function(self, iterator) /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:795 step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) /usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:1259 run return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs) /usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:2730 call_for_each_replica return self._call_for_each_replica(fn, args, kwargs) /usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:3417 _call_for_each_replica return fn(*args, **kwargs) /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:788 run_step ** outputs = model.train_step(data) /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:756 train_step y, y_pred, sample_weight, regularization_losses=self.losses) /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/compile_utils.py:203 __call__ loss_value = loss_obj(y_t, y_p, sample_weight=sw) /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/losses.py:152 __call__ losses = call_fn(y_true, y_pred) /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/losses.py:256 call ** return ag_fn(y_true, y_pred, **self._fn_kwargs) /usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py:201 wrapper return target(*args, **kwargs) /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/losses.py:1537 categorical_crossentropy return K.categorical_crossentropy(y_true, y_pred, from_logits=from_logits) /usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py:201 wrapper return target(*args, **kwargs) /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/backend.py:4833 categorical_crossentropy target.shape.assert_is_compatible_with(output.shape) /usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/tensor_shape.py:1134 assert_is_compatible_with raise ValueError("Shapes %s and %s are incompatible" % (self, other)) ValueError: Shapes (256, 4) and (256, 100) are incompatible
100 classes in https://raw.githubusercontent.com/zaidalyafeai/zaidalyafeai.github.io/master/sketcher/mini_classes.txt
model.add(layers.Dense(100, activation='softmax'))
I copied sketcher/Sketcher.ipynb to train the model https://colab.research.google.com/github/zaidalyafeai/zaidalyafeai.github.io/blob/master/sketcher/Sketcher.ipynb but module 'tensorflow._api.v2.train' has no attribute 'AdamOptimizer so I changed
adam = tf.train.AdamOptimizer() to adam = tf.optimizers.Adam()
https://github.com/AllenBootung/zaidalyafeai.github.io/blob/master/Sketcher.ipynb After this, I still get ValueError: Shapes (256, 4) and (256, 100) are incompatible How to fix this? Thank you.
model.fit(x = x_train, y = y_train, validation_split=0.1, batch_size = 256, verbose=2, epochs=5)