zchen0420 / nn_papers

To record my paper reading in my native language, mimicking ooooohira-san.
0 stars 0 forks source link

Document-level text summarization #9

Open zchen0420 opened 6 months ago

zchen0420 commented 6 months ago

SARI & D-SARI

JADOS

zchen0420 commented 6 months ago

In-context Learning of Large Language Models for Controlled Dialogue Summarization: A Holistic Benchmark and Empirical Analysis

2023 New Frontiers in Summarization Workshop, ACL | Yuting Tang et al. | NTU CNRS@CREATE IIR

Abstractive dialogue summarization (vs. document summarization) Controlled: imposing additional constraints on outputs. Assess: entity control, length control, and person-focused planning, as well as uncontrolled settings) SAMSum: a human-annotated dataset for abstractive multi-turn dialogue summarization 大量使用了GPT-3 as evaluator。并且也提及了随机选择demo对于精度的分散程度影响。

Evaluating Large Language Models on Controlled Generation Tasks

| Jiao Sun et al.,| USC UC

从一个方面去evaluate了当时的LLM: Numerical Planing:对于字数的控制不够精确,补全生成结果有偏短的趋势。 Content Controlling:gap is significantly reduced when ICL is used;GPT的zs一骑绝尘; Story:undesired repetitions, unnatural topic drifts;GPT还是一骑绝尘。虽然分数不代表主要观感。 Rationale:acc(I+R→O) - acc(I→O),leakage|background knowledge,

zchen0420 commented 6 months ago

Controlling Output Length in Neural Encoder-Decoders

2016 EMNLP | Yuta Kikuchi, Graham Neubig, et al. | TIT, CMU

Seq2seq (LSTM) decoding策略:1、禁止EOS、到点停车的beam;2、淘汰不符合要求的长度的beam; learning策略decoder:1、剩余字符plan实时暗示;2、一开始对状态说明长度; 模型有控制长度的能力,外侧的观察。但是RNN内部状态机制未知。

Length Control in Abstractive Summarization by Pretraining Information Selection

2022 ACL | SJTU

Seq2seq (Transformer) 这里不仅考虑到剩余的字符数,也考虑到剩余的字符数对Cross Attention的动态调整(如果已经被attend过了,就减少其权重)。 并且通过sample原数据集,平衡长度分布,行程LBD来平衡/tune模型能力。

zchen0420 commented 6 months ago

Entity-Based Evaluation of Political Bias in Automatic Summarization

2023 EMNLP 把报道内容的主角替换掉(entity replacement)后,summarization会变得更很奇怪。人与文高都耦合。 Summarization models are not neutral with respect to political entities. Entity-centric news articles, those that heavily feature the original entity, lead to more dissimilar summaries upon replacement. PreSumm: BERT + extractive PEGASUS, BART, ProphetNet: abstractive

zchen0420 commented 5 months ago

The 4th New Frontiers in Summarization Workshop

Is ChatGPT a Good NLG Evaluator? A Preliminary Study

Zero-Shot Cross-Lingual Summarization via Large Language Models

SimCSum: Joint Learning of Simplification and Cross-lingual Summarization for Cross-lingual Science Journalism

Extract, Select and Rewrite: A Modular Sentence Summarization Method

抽取关系元组(知识、结构、图)、选取、合成自然语言。比BART更加faithful。

In-context Learning of Large Language Models for Controlled Dialogue Summarization: A Holistic Benchmark and Empirical Analysis