Open Pat-Lafon opened 1 month ago
For subtyping with the num_black
predicate, I've needed to add the following axiom to describe how the number of black nodes for a root with color true can be computed by the number of black nodes in each branch(when equal).
let[@axiom] num_black_root_from_lt_rt (v : int rbtree) (lt : int rbtree)
(rt : int rbtree) (h : int) =
(num_black lt h && num_black rt h && rb_rch v rt && rb_lch v lt && rb_root_color v true)
#==> (num_black v h)
with the following test case simple test case(an rbtree of just a root and two leafs has 0 black nodes):
let[@assert] rty1 =
let inv = (v >= 0 : [%v: int]) [@over] in
let color = (true : [%v: bool]) [@over] in
let[@assert] h =
(v >= 0 && if color then v + v == inv else v + v + 1 == inv
: [%v: int])
[@over]
in
((not (rb_root_color v false)) && rb_root_color v true && num_black v 0
: [%v: int rbtree])
[@under]
let[@assert] rty2 =
let inv = (v >= 0 : [%v: int]) [@over] in
let color = (true : [%v: bool]) [@over] in
let[@assert] h =
(v >= 0 && if color then v + v == inv else v + v + 1 == inv
: [%v: int])
[@over]
in
(fun ((t [@exists]) : int rbtree) ->
rb_leaf t && rb_root_color v true
&& (not (rb_root_color v false))
&& rb_lch v t
&& rb_rch v t
: [%v: int rbtree])
[@under]
I would speculate then there should be an axiom for the alternative case where the node color is false(black)
let[@axiom] num_black_root_from_lt_rt_plus_1 (v : int rbtree) (lt : int rbtree)
(rt : int rbtree) (h : int) =
(num_black lt h && num_black rt h && rb_rch v rt && rb_lch v lt && rb_root_color v false)
#==> (num_black v (h+1))
An axiom for deriving no_red_red
when the root is black
let[@axiom] no_red_red_given_lt_rt_black_root (v : int rbtree) (lt : int rbtree)
(rt : int rbtree) =
(no_red_red lt && no_red_red rt && rb_lch v lt && rb_rch v rt
&& rb_root_color v false)
#==> (no_red_red v)
with a test case
let[@assert] rty1 =
let inv = (v >= 0 : [%v: int]) [@over] in
let color = (true : [%v: bool]) [@over] in
let[@assert] h =
(v >= 0 && if color then v + v == inv else v + v + 1 == inv
: [%v: int])
[@over]
in
(rb_root_color v false
&& (not (rb_root_color v true))
&& no_red_red v
: [%v: int rbtree])
[@under]
let[@assert] rty2 =
let inv = (v >= 0 : [%v: int]) [@over] in
let color = (true : [%v: bool]) [@over] in
let[@assert] h =
(v >= 0 && if color then v + v == inv else v + v + 1 == inv
: [%v: int])
[@over]
in
(fun (* ((n [@exists]) : int) *) ((t [@exists]) : int rbtree) ->
rb_leaf t && not (rb_root_color v true) && rb_root_color v false
&& rb_lch v t
&& rb_rch v t
: [%v: int rbtree])
[@under]
And an axiom for when the root is red:
let[@axiom] no_red_red_given_lt_rt_red_root (v : int rbtree) (lt : int rbtree)
(rt : int rbtree) =
(no_red_red lt && no_red_red rt && rb_lch v lt && rb_rch v rt
&& (not (rb_root_color lt true))
&& (not (rb_root_color rt true))
&& rb_root_color v true)
#==> (no_red_red v)
One more axiom I have needed is saying that trees that are not leafs or trees that are roots have a left and right sub tree.
There are two potential axioms for this(that should be equivalent):
let[@axiom] rbtree_root_lch_rch (l : int rbtree) (x : int) (l1 : int rbtree)
(l2 : int rbtree) =
(rb_root l x) #==> (rb_lch l l1 && rb_rch l l2)
let[@axiom] rbtree_root_lch_rch (l : int rbtree) (l1 : int rbtree)
(l2 : int rbtree) =
(not (rb_leaf l)) #==> (rb_lch l l1 && rb_rch l l2)
I was only successful with one of them because of the axiom filtering in check.ml... https://github.com/zhezhouzz/underapproximation_type/blob/94d0f056488c98bfd9177813c56237f8be466222/backend/check.ml#L63-L86 should also extend the rbtree method predicates
I've gone and verified my RBTree axioms in Coq and found an issue in an above axiom and two axioms that were previously included.
The above axiom should be:
let[@axiom] rbtree_root_lch_rch (l : int rbtree) (x : int)
((l1 [@exists]) : int rbtree) ((l2 [@exists]) : int rbtree) =
(rb_root l x) #==> (rb_lch l l1 && rb_rch l l2)
(Which says that there exists an l1, l2, whereas before it was accidentally forall l1, l2).
Additionally, the axioms num_black_root_black_0_lt_leaf and num_black_root_black_0_rt_leaf currently do not also state that the root node is also no_red_red v
which is required for soundness:
let[@axiom] num_black_root_black_0_lt_leaf (v : int rbtree) (lt : int rbtree) =
(no_red_red v && num_black v 0 && rb_lch v lt) #==> (rb_leaf lt)
let[@axiom] num_black_root_black_0_rt_leaf (v : int rbtree) (rt : int rbtree) =
(no_red_red v && num_black v 0 && rb_rch v rt) #==> (rb_leaf rt)
The full proofs for my current set of rbtree axioms and proofs showing the negation of the above false axioms can be found here: https://github.com/Pat-Lafon/underapproximation_type/blob/e86470a1d897b578dccd05dc0ce30d50aecabd1f/data/validation/proofs/rbtree.v
I've needed to add 2 axioms to get the following subtyping check to go through. It corresponds to a subtyping check between missing coverage and the RBLeaf term(Noting the direction, the reverse case returns true as expected).
The testcase: