Closed czisok closed 4 years ago
After reading your paper, I have a few questions about wide & deep model,wish to communicate wiht you.
# wide part d_layer_wide_i = tf.concat([tf.gather(u_emb, [0], axis=-1) * tf.gather(i_emb, [0], axis=-1), tf.gather(u_emb, [-1], axis=-1) * tf.gather(i_emb, [-1], axis=-1), tf.gather(u_emb, [hidden_units // 2], axis=-1) * tf.gather(i_emb, [hidden_units // 2], axis=-1)], axis=-1)
- Is this place counting cross features?
- In the original paper, didn't it say to make cross features of discrete features?
- Why select [0],[-1] [hiddens // 2]?
After reading your paper, I have a few questions about wide & deep model,wish to communicate wiht you.
# wide part d_layer_wide_i = tf.concat([tf.gather(u_emb, [0], axis=-1) * tf.gather(i_emb, [0], axis=-1), tf.gather(u_emb, [-1], axis=-1) * tf.gather(i_emb, [-1], axis=-1), tf.gather(u_emb, [hidden_units // 2], axis=-1) * tf.gather(i_emb, [hidden_units // 2], axis=-1)], axis=-1)