Closed sTarAnna closed 5 years ago
I ran the program(4 BiLSTM) with tensorflow1.12 and python3.6, too. The mixture can be separated successfully although the loss value seems to be high. Have you ever checked it with audio_test.py ?
I ran the program(4 BiLSTM) with tensorflow1.12 and python3.6, too. The mixture can be separated successfully although the loss value seems to be high. Have you ever checked it with audio_test.py ?
I rewrite my model and it now have 4blstm layers .I found that the loss value become lower and convergence faster .After training I would use audio_test to see if it works . Thanks for your reply!
Thanks for your reply! Btw @njusq我也是nju的,校友你好啊
On 04/18/2019 14:48, njusq wrote:
I ran the program(4 BiLSTM) with tensorflow1.12 and python3.6, too. The mixture can be separated successfully although the loss value seems to be high. Have you ever checked it with audio_test.py ?
— You are receiving this because you are subscribed to this thread. Reply to this email directly, view it on GitHub, or mute the thread.
I ran the program(4 BiLSTM) with tensorflow1.12 and python3.6, too. The mixture can be separated successfully although the loss value seems to be high. Have you ever checked it with audio_test.py ?
I got a problem that the separated speech file (.wav) cant play . Could you please tell me how did solve this problem ? Thank you a lot!
I ran the program(4 BiLSTM) with tensorflow1.12 and python3.6, too. The mixture can be separated successfully although the loss value seems to be high. Have you ever checked it with audio_test.py ?
I got a problem that the separated speech file (.wav) cant play . Could you please tell me how did solve this problem ? Thank you a lot!
you can change the player .
Thanks for your reply! Btw @njusq我也是nju的,校友你好啊
On 04/18/2019 14:48, njusq wrote:
I ran the program(4 BiLSTM) with tensorflow1.12 and python3.6, too. The mixture can be separated successfully although the loss value seems to be high. Have you ever checked it with audio_test.py ?
— You are receiving this because you are subscribed to this thread. Reply to this email directly, view it on GitHub, or mute the thread.
啊啊啊鸡冻!好像师兄也是Acoustics的!老师让我先通过复现这个项目来学习相关的知识,从零开始的小白觉得好艰难TAT,只好到GitHub上看看有没有现成的...然后我现在在用这个框架,改掉loss的计算方式做成DANet的,碰到了许多问题,可以向师兄请教吗?
I ran the program(4 BiLSTM) with tensorflow1.12 and python3.6, too. The mixture can be separated successfully although the loss value seems to be high. Have you ever checked it with audio_test.py ?
I got a problem that the separated speech file (.wav) cant play . Could you please tell me how did solve this problem ? Thank you a lot!
I once encountered the same problem opening the file through Windows Media Player. I guess something related the format of the file leads to this problem. Maybe you can try to open the file through Adobe Audition or under your Linux system.
I ran the program(4 BiLSTM) with tensorflow1.12 and python3.6, too. The mixture can be separated successfully although the loss value seems to be high. Have you ever checked it with audio_test.py ? I got a problem that the separated speech file (.wav) cant play . Could you please tell me how did solve this problem ? Thank you a lot!
I once encountered the same problem opening the file through Windows Media Player. I guess something related the format of the file leads to this problem. Maybe you can try to open the file through Adobe Audition or under your Linux system.
可以,解决了,给力。谢谢。
I ran the program(4 BiLSTM) with tensorflow1.12 and python3.6, too. The mixture can be separated successfully although the loss value seems to be high. Have you ever checked it with audio_test.py ? I got a problem that the separated speech file (.wav) cant play . Could you please tell me how did solve this problem ? Thank you a lot!
you can change the player .
yeah. I open it under linux os and it has no problem .Thanks a lot
I ran the program(4 BiLSTM) with tensorflow1.12 and python3.6, too. The mixture can be separated successfully although the loss value seems to be high. Have you ever checked it with audio_test.py ? I got a problem that the separated speech file (.wav) cant play . Could you please tell me how did solve this problem ? Thank you a lot! you can change the player . yeah. I open it under linux os and it has no problem .Thanks a lot 师兄你好呀,我能加一下你的微信吗?我感觉自己快要毕不了业了。。。我自己之前想过要换神经网络,但是不知道为什么会出现矩阵维度不匹配,百度也找不到。。。这个不知道是怎么解决的呀!感谢师兄的回复!
你想换成什么神经网络0 0
@njusq 好啊好啊,师弟是卢晶老师组里的吗?
@Yangjie55 haoran7123微信 多多交流
@sTarAnna O_O O_o o_o o_O O_O
@sTarAnna O_O O_o o_o o_O O_O
怎么了大兄弟0 0
@sTarAnna O_O O_o o_o o_O O_O
怎么了大兄弟0 0
突然变成大兄弟哈哈哈,我是想换成crnn的网络,可是我写的时候,总会在loss的时候,说矩阵元素相乘的时候,维度是不匹配的。我就有点蒙。。。师兄你有实现crnn的网络嘛?
@njusq 好啊好啊,师弟是卢晶老师组里的吗?
真羡慕师兄你们哦,我这本科毕设都搞得要头秃了哈哈哈。。。还不知道研究生可咋办哈哈。。也是自己太菜了,难受了难受了。。。
@sTarAnna O_O O_o o_o o_O O_O
怎么了大兄弟0 0
然后就是论文里面的公式和那些参数,讲实话,我又看了一遍,还是没有看懂什么意思。。。很尴尬。。师兄你有联系方式吗?
@sTarAnna O_O O_o o_o o_O O_O
怎么了大兄弟0 0
突然变成大兄弟哈哈哈,我是想换成crnn的网络,可是我写的时候,总会在loss的时候,说矩阵元素相乘的时候,维度是不匹配的。我就有点蒙。。。师兄你有实现crnn的网络嘛?
我也是做毕设的0 0 我没实现CRNN ,我按照18年的GCDC实现了GCN做DC的
@sTarAnna O_O O_o o_o o_O O_O
怎么了大兄弟0 0
突然变成大兄弟哈哈哈,我是想换成crnn的网络,可是我写的时候,总会在loss的时候,说矩阵元素相乘的时候,维度是不匹配的。我就有点蒙。。。师兄你有实现crnn的网络嘛?
我也是做毕设的0 0 我没实现CRNN ,我按照18年的GCDC实现了GCN做DC的
那你超级厉害呀,我感觉很多东西理解不了。。。唉。。心慌慌。我问你几个问题阔以 不: 1.感觉周浩然师兄在神经网络后面没有加feedforwordlayer,原文中好像有哦(可能是我没看懂),加上师兄用的这个layernormbaisccell和basiccell的神经单元我不知道有什么区别耶。 2. 这个应该是程序里面的loss的计算方式,可是里面的D的-二分之一,那里我看不懂。。。 3.还有原文中的这句话:,and the embedding can be considered a permutation-and cardinality-independent encoding of the network’s estimate of the signal partition.所以这个embedding到底是什么。。我到现在都没理解。 4.还有原文中的V = fθ(x) ∈RN×K,这个我地方我没看懂唉,还请指教,感谢!
@sTarAnna O_O O_o o_o o_O O_O
怎么了大兄弟0 0
突然变成大兄弟哈哈哈,我是想换成crnn的网络,可是我写的时候,总会在loss的时候,说矩阵元素相乘的时候,维度是不匹配的。我就有点蒙。。。师兄你有实现crnn的网络嘛?
我也是做毕设的0 0 我没实现CRNN ,我按照18年的GCDC实现了GCN做DC的
我能借鉴一下你的model的code嘛?(ps:我有点不要脸哈哈哈哈) 你实现的这个方法我听都没听过。。。膜拜一下大佬!!
我能借鉴一下你的model的code嘛?(ps:我有点不要脸哈哈哈哈) 你实现的这个方法我听都没听过。。。膜拜一下大佬!!
@Yangjie55 也在学习过程中的我和你交流吧...wechat(去掉#号): s#q#i#a#n#9#6#0#7#2#4
@sTarAnna O_O O_o o_o o_O O_O 怎么了大兄弟0 0 突然变成大兄弟哈哈哈,我是想换成crnn的网络,可是我写的时候,总会在loss的时候,说矩阵元素相乘的时候,维度是不匹配的。我就有点蒙。。。师兄你有实现crnn的网络嘛? 我也是做毕设的0 0 我没实现CRNN ,我按照18年的GCDC实现了GCN做DC的
那你超级厉害呀,我感觉很多东西理解不了。。。唉。。心慌慌。我问你几个问题阔以 不: 1.感觉周浩然师兄在神经网络后面没有加feedforwordlayer,原文中好像有哦(可能是我没看懂),加上师兄用的这个layernormbaisccell和basiccell的神经单元我不知道有什么区别耶。 2. 这个应该是程序里面的loss的计算方式,可是里面的D的-二分之一,那里我看不懂。。。 3.还有原文中的这句话:,and the embedding can be considered a permutation-and cardinality-independent encoding of the network’s estimate of the signal partition.所以这个embedding到底是什么。。我到现在都没理解。 4.还有原文中的V = fθ(x) ∈RN×K,这个我地方我没看懂唉,还请指教,感谢!
1.加了 `# one layer of embedding output with tanh activation function out_concate = tf.reshape(state_concate4, [-1, self.n_hidden * 2]) emb_out = tf.matmul(out_concate, self.weights['out']) + self.biases['out'] emb_out = tf.nn.tanh(emb_out) reshaped_emb = tf.reshape(emb_out, [-1, NEFF, EMBBEDDING_D])
normalized_emb = tf.nn.l2_normalize(reshaped_emb, 2)
return normalized_emb`
2.你看的不是正式版吧0 0正式版公式不长这样 3.DC通过亲和矩阵,实现了置换无关的方法。引用GCDC内的一句话,网络让相同源的向量平行,否则正交。表现在矩阵里就是相同源的值比较大,不同源的比较小。构建亲和矩阵解决了置换问题(另一种可用的是PIT)。This implies that this objective function encourages the mapped embedding vectors to become parallel if they are dominated by the same source and become orthogonal otherwise. 4.R N* K 就是V是一个N* K矩阵 5.GCDC : https://ieeexplore.ieee.org/document/8461746
....不是正版吗...可是我看的就是周师兄在github上贴的那个呀...感觉你好厉害呀...在本科就被拉开了...苦笑中...介不介意加个微信聊呀...带我走进语音处理中..😁
....不是正版吗...可是我看的就是周师兄在github上贴的那个呀...感觉你好厉害呀...在本科就被拉开了...苦笑中...介不介意加个微信聊呀...带我走进语音处理中..😁
1.这是DC正式发表的论文:https://ieeexplore.ieee.org/document/7471631 这篇论文的结构是2层BLSTM。
....不是正版吗...可是我看的就是周师兄在github上贴的那个呀...感觉你好厉害呀...在本科就被拉开了...苦笑中...介不介意加个微信聊呀...带我走进语音处理中..grin
1.这是DC正式发表的论文:https://ieeexplore.ieee.org/document/7471631 这篇论文的结构是2层BLSTM。
- 这里https://www.isca-speech.org/archive/Interspeech_2016/搜 Single-channel multi-speaker separation using deep clustering ,这篇论文是探讨了4层BLSTM以及更宽的网络的0 0。里面还有对K-means的改进和End2End2的讨论。
- 信号处理那部分我自己也很懵逼0 0
好的好的 感谢大兄弟啦 那我把这些文章读了先! 再一次感谢!!!
Thanks for your great job.I rewrite you program to make it run with tensorflow1.12 and python 3. I only use 2BLSTM not 4.At the begining of train stage ,the train loss is 3000k, after 66k steps ,the train loss is 1000k . I want to know thats correct or not.
dc model ` with tf.variable_scope('BLSTM1') as scope: