Abstract
We present the first distributed optimization algorithm with lazy communication for collaborative geometric estimation, the backbone of modern collaborative simultaneous localization and mapping (SLAM) and structure-from-motion (SfM) applications. Our method allows agents to cooperatively reconstruct a shared geometric model on a central server by fusing individual observations, but without the need to transmit potentially sensitive information about the agents themselves (such as their locations). Furthermore, to alleviate the burden of communication during iterative optimization, we design a set of communication triggering conditions that enable agents to selectively upload local information that are useful to global optimization. Our approach thus achieves significant communication reduction with minimal impact on optimization performance. As our main theoretical contribution, we prove that our method converges to first-order critical points with a sublinear convergence rate. Numerical evaluations on bundle adjustment problems from collaborative SLAM and SfM datasets show that our method performs competitively against existing distributed techniques, while achieving up to 78% total communication reduction.
FAST-LIVO: Fast and Tightly-coupled Sparse-Direct LiDAR-Inertial-Visual Odometry
Abstract
To achieve accurate and robust pose estimation in Simultaneous Localization and Mapping (SLAM) task, multi-sensor fusion is proven to be an effective solution and thus provides great potential in robotic applications. This paper proposes FAST-LIVO, a fast LiDAR-Inertial-Visual Odometry system, which builds on two tightly-coupled and direct odometry subsystems: a VIO subsystem and a LIO subsystem. The LIO subsystem registers raw points (instead of feature points on e.g., edges or planes) of a new scan to an incrementally-built point cloud map. The map points are additionally attached with image patches, which are then used in the VIO subsystem to align a new image by minimizing the direct photometric errors without extracting any visual features (e.g., ORB or FAST corner features). To further improve the VIO robustness and accuracy, a novel outlier rejection method is proposed to reject unstable map points that lie on edges or are occluded in the image view. Experiments on both open data sequences and our customized device data are conducted. The results show our proposed system outperforms other counterparts and can handle challenging environments at reduced computation cost. The system supports both multi-line spinning LiDARs and emerging solid-state LiDARs with completely different scanning patterns, and can run in real-time on both Intel and ARM processors. We open source our code and dataset of this work on Github to benefit the robotics community.
Keyword: Visual inertial
There is no result
Keyword: livox
There is no result
Keyword: loam
There is no result
Keyword: Visual inertial odometry
There is no result
Keyword: lidar
InCloud: Incremental Learning for Point Cloud Place Recognition
Abstract
Place recognition is a fundamental component of robotics, and has seen tremendous improvements through the use of deep learning models in recent years. Networks can experience significant drops in performance when deployed in unseen or highly dynamic environments, and require additional training on the collected data. However naively fine-tuning on new training distributions can cause severe degradation of performance on previously visited domains, a phenomenon known as catastrophic forgetting. In this paper we address the problem of incremental learning for point cloud place recognition and introduce InCloud, a structure-aware distillation-based approach which preserves the higher-order structure of the network's embedding space. We introduce several challenging new benchmarks on four popular and large-scale LiDAR datasets (Oxford, MulRan, In-house and KITTI) showing broad improvements in point cloud place recognition performance over a variety of network architectures. To the best of our knowledge, this work is the first to effectively apply incremental learning for point cloud place recognition.
Dense Voxel Fusion for 3D Object Detection
Authors: Anas Mahmoud, Jordan S. K. Hu, Steven L. Waslander
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Abstract
Camera and LiDAR sensor modalities provide complementary appearance and geometric information useful for detecting 3D objects for autonomous vehicle applications. However, current fusion models underperform state-of-art LiDAR-only methods on 3D object detection benchmarks. Our proposed solution, Dense Voxel Fusion (DVF) is a sequential fusion method that generates multi-scale multi-modal dense voxel feature representations, improving expressiveness in low point density regions. To enhance multi-modal learning, we train directly with ground truth 2D bounding box labels, avoiding noisy, detector-specific, 2D predictions. Additionally, we use LiDAR ground truth sampling to simulate missed 2D detections and to accelerate training convergence. Both DVF and the multi-modal training approaches can be applied to any voxel-based LiDAR backbone without introducing additional learnable parameters. DVF outperforms existing sparse fusion detectors, ranking $1^{st}$ among all published fusion methods on KITTI's 3D car detection benchmark at the time of submission and significantly improves 3D vehicle detection performance of voxel-based methods on the Waymo Open Dataset. We also show that our proposed multi-modal training strategy results in better generalization compared to training using erroneous 2D predictions.
FAST-LIVO: Fast and Tightly-coupled Sparse-Direct LiDAR-Inertial-Visual Odometry
Abstract
To achieve accurate and robust pose estimation in Simultaneous Localization and Mapping (SLAM) task, multi-sensor fusion is proven to be an effective solution and thus provides great potential in robotic applications. This paper proposes FAST-LIVO, a fast LiDAR-Inertial-Visual Odometry system, which builds on two tightly-coupled and direct odometry subsystems: a VIO subsystem and a LIO subsystem. The LIO subsystem registers raw points (instead of feature points on e.g., edges or planes) of a new scan to an incrementally-built point cloud map. The map points are additionally attached with image patches, which are then used in the VIO subsystem to align a new image by minimizing the direct photometric errors without extracting any visual features (e.g., ORB or FAST corner features). To further improve the VIO robustness and accuracy, a novel outlier rejection method is proposed to reject unstable map points that lie on edges or are occluded in the image view. Experiments on both open data sequences and our customized device data are conducted. The results show our proposed system outperforms other counterparts and can handle challenging environments at reduced computation cost. The system supports both multi-line spinning LiDARs and emerging solid-state LiDARs with completely different scanning patterns, and can run in real-time on both Intel and ARM processors. We open source our code and dataset of this work on Github to benefit the robotics community.
Learning Moving-Object Tracking with FMCW LiDAR
Authors: Yi Gu, Hongzhi Cheng, Kafeng Wang, Dejing Dou, Chengzhong Xu, Hui Kong
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Abstract
In this paper, we propose a learning-based moving-object tracking method utilizing our newly developed LiDAR sensor, Frequency Modulated Continuous Wave (FMCW) LiDAR. Compared with most existing commercial LiDAR sensors, our FMCW LiDAR can provide additional Doppler velocity information to each 3D point of the point clouds. Benefiting from this, we can generate instance labels as ground truth in a semi-automatic manner. Given the labels, we propose a contrastive learning framework, which pulls together the features from the same instance in embedding space and pushes apart the features from different instances, to improve the tracking quality. Extensive experiments are conducted on our recorded driving data, and the results show that our method outperforms the baseline methods by a large margin.
Self-Supervised Scene Flow Estimation with 4D Automotive Radar
Authors: Fangqiang Ding, Zhijun Pan, Yimin Deng, Jianning Deng, Chris Xiaoxuan Lu
Subjects: Computer Vision and Pattern Recognition (cs.CV); Robotics (cs.RO)
Abstract
Scene flow allows autonomous vehicles to reason about the arbitrary motion of multiple independent objects which is the key to long-term mobile autonomy. While estimating the scene flow from LiDAR has progressed recently, it remains largely unknown how to estimate the scene flow from a 4D radar - an increasingly popular automotive sensor for its robustness against adverse weather and lighting conditions. Compared with the LiDAR point clouds, radar data are drastically sparser, noisier and in much lower resolution. Annotated datasets for radar scene flow are also in absence and costly to acquire in the real world. These factors jointly pose the radar scene flow estimation as a challenging problem. This work aims to address the above challenges and estimate scene flow from 4D radar point clouds by leveraging self-supervised learning. A robust scene flow estimation architecture and three novel losses are bespoken designed to cope with intractable radar data. Real-world experimental results validate that our method is able to robustly estimate the radar scene flow in the wild and effectively supports the downstream task of motion segmentation.
Improving Lidar-Based Semantic Segmentation of Top-View Grid Maps by Learning Features in Complementary Representations
Authors: Frank Bieder, Maximilian Link, Simon Romanski, Haohao Hu, Christoph Stiller
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Abstract
In this paper we introduce a novel way to predict semantic information from sparse, single-shot LiDAR measurements in the context of autonomous driving. In particular, we fuse learned features from complementary representations. The approach is aimed specifically at improving the semantic segmentation of top-view grid maps. Towards this goal the 3D LiDAR point cloud is projected onto two orthogonal 2D representations. For each representation a tailored deep learning architecture is developed to effectively extract semantic information which are fused by a superordinate deep neural network. The contribution of this work is threefold: (1) We examine different stages within the segmentation network for fusion. (2) We quantify the impact of embedding different features. (3) We use the findings of this survey to design a tailored deep neural network architecture leveraging respective advantages of different representations. Our method is evaluated using the SemanticKITTI dataset which provides a point-wise semantic annotation of more than 23.000 LiDAR measurements.
Fast and Robust Ground Surface Estimation from LIDAR Measurements using Uniform B-Splines
Authors: Sascha Wirges, Kevin Rösch, Frank Bieder, Christoph Stiller
Subjects: Robotics (cs.RO); Computer Vision and Pattern Recognition (cs.CV)
Abstract
We propose a fast and robust method to estimate the ground surface from LIDAR measurements on an automated vehicle. The ground surface is modeled as a UBS which is robust towards varying measurement densities and with a single parameter controlling the smoothness prior. We model the estimation process as a robust LS optimization problem which can be reformulated as a linear problem and thus solved efficiently. Using the SemanticKITTI data set, we conduct a quantitative evaluation by classifying the point-wise semantic annotations into ground and non-ground points. Finally, we validate the approach on our research vehicle in real-world scenarios.
Keyword: loop detection
There is no result
Keyword: autonomous driving
Continual BatchNorm Adaptation (CBNA) for Semantic Segmentation
Authors: Marvin Klingner, Mouadh Ayache, Tim Fingscheidt
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Abstract
Environment perception in autonomous driving vehicles often heavily relies on deep neural networks (DNNs), which are subject to domain shifts, leading to a significantly decreased performance during DNN deployment. Usually, this problem is addressed by unsupervised domain adaptation (UDA) approaches trained either simultaneously on source and target domain datasets or even source-free only on target data in an offline fashion. In this work, we further expand a source-free UDA approach to a continual and therefore online-capable UDA on a single-image basis for semantic segmentation. Accordingly, our method only requires the pre-trained model from the supplier (trained in the source domain) and the current (unlabeled target domain) camera image. Our method Continual BatchNorm Adaptation (CBNA) modifies the source domain statistics in the batch normalization layers, using target domain images in an unsupervised fashion, which yields consistent performance improvements during inference. Thereby, in contrast to existing works, our approach can be applied to improve a DNN continuously on a single-image basis during deployment without access to source data, without algorithmic delay, and nearly without computational overhead. We show the consistent effectiveness of our method across a wide variety of source/target domain settings for semantic segmentation. As part of this work, our code will be made publicly available.
Improving Lidar-Based Semantic Segmentation of Top-View Grid Maps by Learning Features in Complementary Representations
Authors: Frank Bieder, Maximilian Link, Simon Romanski, Haohao Hu, Christoph Stiller
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Abstract
In this paper we introduce a novel way to predict semantic information from sparse, single-shot LiDAR measurements in the context of autonomous driving. In particular, we fuse learned features from complementary representations. The approach is aimed specifically at improving the semantic segmentation of top-view grid maps. Towards this goal the 3D LiDAR point cloud is projected onto two orthogonal 2D representations. For each representation a tailored deep learning architecture is developed to effectively extract semantic information which are fused by a superordinate deep neural network. The contribution of this work is threefold: (1) We examine different stages within the segmentation network for fusion. (2) We quantify the impact of embedding different features. (3) We use the findings of this survey to design a tailored deep neural network architecture leveraging respective advantages of different representations. Our method is evaluated using the SemanticKITTI dataset which provides a point-wise semantic annotation of more than 23.000 LiDAR measurements.
Chance-Constrained Iterative Linear-Quadratic Stochastic Games
Abstract
Dynamic game arises as a powerful paradigm for multi-robot planning, for which the safety constraints satisfaction is crucial. Constrained stochastic games are of particular interest, as real-world robots need to operate and satisfy constraints under uncertainty. Existing methods for solving stochastic games handle constraints using soft penalties with hand-tuned weights. However, finding a suitable penalty weight is non-trivial and requires trial and error. In this paper, we propose the chance-constrained iterative linear-quadratic stochastic games (CCILQGames) algorithm. CCILQGames solves chance-constrained stochastic games using the augmented Lagrangian method, with the merit of automatically finding a suitable penalty weight. We evaluate our algorithm in three autonomous driving scenarios, including merge, intersection, and roundabout. Experimental results and Monte Carlo tests show that CCILQGames could generate safe and interactive strategies in stochastic environments.
A Unified Query-based Paradigm for Point Cloud Understanding
Abstract
3D point cloud understanding is an important component in autonomous driving and robotics. In this paper, we present a novel Embedding-Querying paradigm (EQ-Paradigm) for 3D understanding tasks including detection, segmentation and classification. EQ-Paradigm is a unified paradigm that enables the combination of any existing 3D backbone architectures with different task heads. Under the EQ-Paradigm, the input is firstly encoded in the embedding stage with an arbitrary feature extraction architecture, which is independent of tasks and heads. Then, the querying stage enables the encoded features to be applicable for diverse task heads. This is achieved by introducing an intermediate representation, i.e., Q-representation, in the querying stage to serve as a bridge between the embedding stage and task heads. We design a novel Q-Net as the querying stage network. Extensive experimental results on various 3D tasks show that EQ-Paradigm in tandem with Q-Net is a general and effective pipeline, which enables a flexible collaboration of backbones and heads, and further boosts the performance of the state-of-the-art methods. All codes and models will be published soon.
Keyword: mapping
Grasp Transfer for Deformable Objects by Functional Map Correspondence
Authors: Cristiana de Farias, Brahim Tamadazte, Rustam Stolkin, Naresh Marturi
Abstract
Handling object deformations for robotic grasping is still a major problem to solve. In this paper, we propose an efficient learning-free solution for this problem where generated grasp hypotheses of a region of an object are adapted to its deformed configurations. To this end, we investigate the applicability of functional map (FM) correspondence, where the shape matching problem is treated as searching for correspondences between geometric functions in a reduced basis. For a user selected region of an object, a ranked list of grasp candidates is generated with local contact moment (LoCoMo) based grasp planner. The proposed FM-based methodology maps these candidates to an instance of the object that has suffered arbitrary level of deformation. The best grasp, by analysing its kinematic feasibility while respecting the original finger configuration as much as possible, is then executed on the object. We have compared the performance of our method with two different state-of-the-art correspondence mapping techniques in terms of grasp stability and region grasping accuracy for 4 different objects with 5 different deformations.
Distributed Riemannian Optimization with Lazy Communication for Collaborative Geometric Estimation
Authors: Yulun Tian, Amrit Singh Bedi, Alec Koppel, Miguel Calvo-Fullana, David M. Rosen, Jonathan P. How
Subjects: Robotics (cs.RO); Optimization and Control (math.OC)
Abstract
We present the first distributed optimization algorithm with lazy communication for collaborative geometric estimation, the backbone of modern collaborative simultaneous localization and mapping (SLAM) and structure-from-motion (SfM) applications. Our method allows agents to cooperatively reconstruct a shared geometric model on a central server by fusing individual observations, but without the need to transmit potentially sensitive information about the agents themselves (such as their locations). Furthermore, to alleviate the burden of communication during iterative optimization, we design a set of communication triggering conditions that enable agents to selectively upload local information that are useful to global optimization. Our approach thus achieves significant communication reduction with minimal impact on optimization performance. As our main theoretical contribution, we prove that our method converges to first-order critical points with a sublinear convergence rate. Numerical evaluations on bundle adjustment problems from collaborative SLAM and SfM datasets show that our method performs competitively against existing distributed techniques, while achieving up to 78% total communication reduction.
Providing A Compiler Technology-Based Alternative For Big Data Application Infrastructures
Authors: K. F. D. Rietveld, H. A. G. Wijshoff
Subjects: Distributed, Parallel, and Cluster Computing (cs.DC)
Abstract
The unprecedented growth of data volumes has caused traditional approaches to computing to be re-evaluated. This has started a transition towards the use of very large-scale clusters of commodity hardware and has given rise to the development of many new languages and paradigms for data processing and analysis. In this paper, we propose a compiler technology-based alternative to the development of many different Big Data application infrastructures. Key to this approach is the development of a single intermediate representation that enables the integration of compiler optimization and query optimization, and the re-use of many traditional compiler techniques for parallelization such as data distribution and loop scheduling. We show how the single intermediate can act as a generic intermediate for Big Data languages by mapping SQL and MapReduce onto this intermediate.
FAST-LIVO: Fast and Tightly-coupled Sparse-Direct LiDAR-Inertial-Visual Odometry
Abstract
To achieve accurate and robust pose estimation in Simultaneous Localization and Mapping (SLAM) task, multi-sensor fusion is proven to be an effective solution and thus provides great potential in robotic applications. This paper proposes FAST-LIVO, a fast LiDAR-Inertial-Visual Odometry system, which builds on two tightly-coupled and direct odometry subsystems: a VIO subsystem and a LIO subsystem. The LIO subsystem registers raw points (instead of feature points on e.g., edges or planes) of a new scan to an incrementally-built point cloud map. The map points are additionally attached with image patches, which are then used in the VIO subsystem to align a new image by minimizing the direct photometric errors without extracting any visual features (e.g., ORB or FAST corner features). To further improve the VIO robustness and accuracy, a novel outlier rejection method is proposed to reject unstable map points that lie on edges or are occluded in the image view. Experiments on both open data sequences and our customized device data are conducted. The results show our proposed system outperforms other counterparts and can handle challenging environments at reduced computation cost. The system supports both multi-line spinning LiDARs and emerging solid-state LiDARs with completely different scanning patterns, and can run in real-time on both Intel and ARM processors. We open source our code and dataset of this work on Github to benefit the robotics community.
Abstract
Correspondence learning is a fundamental problem in robotics, which aims to learn a mapping between state, action pairs of agents of different dynamics or embodiments. However, current correspondence learning methods either leverage strictly paired data -- which are often difficult to collect -- or learn in an unsupervised fashion from unpaired data using regularization techniques such as cycle-consistency -- which suffer from severe misalignment issues. We propose a weakly supervised correspondence learning approach that trades off between strong supervision over strictly paired data and unsupervised learning with a regularizer over unpaired data. Our idea is to leverage two types of weak supervision: i) temporal ordering of states and actions to reduce the compounding error, and ii) paired abstractions, instead of paired data, to alleviate the misalignment problem and learn a more accurate correspondence. The two types of weak supervision are easy to access in real-world applications, which simultaneously reduces the high cost of annotating strictly paired data and improves the quality of the learned correspondence.
Vision-based Large-scale 3D Semantic Mapping for Autonomous Driving Applications
Authors: Qing Cheng, Niclas Zeller, Daniel Cremers
Subjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Abstract
In this paper, we present a complete pipeline for 3D semantic mapping solely based on a stereo camera system. The pipeline comprises a direct sparse visual odometry front-end as well as a back-end for global optimization including GNSS integration, and semantic 3D point cloud labeling. We propose a simple but effective temporal voting scheme which improves the quality and consistency of the 3D point labels. Qualitative and quantitative evaluations of our pipeline are performed on the KITTI-360 dataset. The results show the effectiveness of our proposed voting scheme and the capability of our pipeline for efficient large-scale 3D semantic mapping. The large-scale mapping capabilities of our pipeline is furthermore demonstrated by presenting a very large-scale semantic map covering 8000 km of roads generated from data collected by a fleet of vehicles.
SFCaaS: Service Function Chains as a Service in NFV Environments
Abstract
With the emergence of network softwarization trend, traditional networking services offered by Internet providers are expected to evolve by fully leveraging new recent technologies like network function virtualization and software defined networking. In this paper, we investigate offering Service Function Chains as a Service (SFCaaS) in NFV Environments. We first describe the potential business model to offer such a service. We then conduct a detailed study of the costs of virtual machine instances offered by Amazon EC2 with respect to the location, instance size, and performance in order to guide service chain provisioning and resource allocation. Afterwards, we address the resource allocation problem for service chain functions from the SFC provider's perspective while leveraging the performed cost study. We hence formulate the problem as an Integer Linear Program (ILP) aiming at reducing the SFC provider's operational costs of virtual machine instances and links as well as the synchronization costs among the instances. We also propose a new heuristic algorithm to solve the mapping problem with the same aforementioned goals taking into account the conducted study of the costs of Amazon EC2 instances. We show through extensive simulations that the proposed heuristic significantly reduce operational costs compared to a Baseline algorithm inspired by the existing literature.
On the application of generative adversarial networks for nonlinear modal analysis
Authors: G. Tsialiamanis, M.D. Champneys, N. Dervilis, D.J. Wagg, K. Worden
Subjects: Machine Learning (cs.LG); Computational Engineering, Finance, and Science (cs.CE)
Abstract
Linear modal analysis is a useful and effective tool for the design and analysis of structures. However, a comprehensive basis for nonlinear modal analysis remains to be developed. In the current work, a machine learning scheme is proposed with a view to performing nonlinear modal analysis. The scheme is focussed on defining a one-to-one mapping from a latent modal' space to the natural coordinate space, whilst also imposing orthogonality of the mode shapes. The mapping is achieved via the use of the recently-developed cycle-consistent generative adversarial network (cycle-GAN) and an assembly of neural networks targeted on maintaining the desired orthogonality. The method is tested on simulated data from structures with cubic nonlinearities and different numbers of degrees of freedom, and also on data from an experimental three-degree-of-freedom set-up with a column-bumper nonlinearity. The results reveal the method's efficiency in separating themodes'. The method also provides a nonlinear superposition function, which in most cases has very good accuracy.
Keyword: localization
Distributed Riemannian Optimization with Lazy Communication for Collaborative Geometric Estimation
Authors: Yulun Tian, Amrit Singh Bedi, Alec Koppel, Miguel Calvo-Fullana, David M. Rosen, Jonathan P. How
Subjects: Robotics (cs.RO); Optimization and Control (math.OC)
Abstract
We present the first distributed optimization algorithm with lazy communication for collaborative geometric estimation, the backbone of modern collaborative simultaneous localization and mapping (SLAM) and structure-from-motion (SfM) applications. Our method allows agents to cooperatively reconstruct a shared geometric model on a central server by fusing individual observations, but without the need to transmit potentially sensitive information about the agents themselves (such as their locations). Furthermore, to alleviate the burden of communication during iterative optimization, we design a set of communication triggering conditions that enable agents to selectively upload local information that are useful to global optimization. Our approach thus achieves significant communication reduction with minimal impact on optimization performance. As our main theoretical contribution, we prove that our method converges to first-order critical points with a sublinear convergence rate. Numerical evaluations on bundle adjustment problems from collaborative SLAM and SfM datasets show that our method performs competitively against existing distributed techniques, while achieving up to 78% total communication reduction.
FAST-LIVO: Fast and Tightly-coupled Sparse-Direct LiDAR-Inertial-Visual Odometry
Abstract
To achieve accurate and robust pose estimation in Simultaneous Localization and Mapping (SLAM) task, multi-sensor fusion is proven to be an effective solution and thus provides great potential in robotic applications. This paper proposes FAST-LIVO, a fast LiDAR-Inertial-Visual Odometry system, which builds on two tightly-coupled and direct odometry subsystems: a VIO subsystem and a LIO subsystem. The LIO subsystem registers raw points (instead of feature points on e.g., edges or planes) of a new scan to an incrementally-built point cloud map. The map points are additionally attached with image patches, which are then used in the VIO subsystem to align a new image by minimizing the direct photometric errors without extracting any visual features (e.g., ORB or FAST corner features). To further improve the VIO robustness and accuracy, a novel outlier rejection method is proposed to reject unstable map points that lie on edges or are occluded in the image view. Experiments on both open data sequences and our customized device data are conducted. The results show our proposed system outperforms other counterparts and can handle challenging environments at reduced computation cost. The system supports both multi-line spinning LiDARs and emerging solid-state LiDARs with completely different scanning patterns, and can run in real-time on both Intel and ARM processors. We open source our code and dataset of this work on Github to benefit the robotics community.
Translation Invariant Global Estimation of Heading Angle Using Sinogram of LiDAR Point Cloud
Authors: Xiaqing Ding, Xuecheng Xu, Sha Lu, Yanmei Jiao, Mengwen Tan, Rong Xiong, Huanjun Deng, Mingyang Li, Yue Wang
Subjects: Robotics (cs.RO); Computer Vision and Pattern Recognition (cs.CV)
Abstract
Global point cloud registration is an essential module for localization, of which the main difficulty exists in estimating the rotation globally without initial value. With the aid of gravity alignment, the degree of freedom in point cloud registration could be reduced to 4DoF, in which only the heading angle is required for rotation estimation. In this paper, we propose a fast and accurate global heading angle estimation method for gravity-aligned point clouds. Our key idea is that we generate a translation invariant representation based on Radon Transform, allowing us to solve the decoupled heading angle globally with circular cross-correlation. Besides, for heading angle estimation between point clouds with different distributions, we implement this heading angle estimator as a differentiable module to train a feature extraction network end- to-end. The experimental results validate the effectiveness of the proposed method in heading angle estimation and show better performance compared with other methods.
Keyword: SLAM
Distributed Riemannian Optimization with Lazy Communication for Collaborative Geometric Estimation
FAST-LIVO: Fast and Tightly-coupled Sparse-Direct LiDAR-Inertial-Visual Odometry
Keyword: Visual inertial
There is no result
Keyword: livox
There is no result
Keyword: loam
There is no result
Keyword: Visual inertial odometry
There is no result
Keyword: lidar
InCloud: Incremental Learning for Point Cloud Place Recognition
Dense Voxel Fusion for 3D Object Detection
FAST-LIVO: Fast and Tightly-coupled Sparse-Direct LiDAR-Inertial-Visual Odometry
Learning Moving-Object Tracking with FMCW LiDAR
Self-Supervised Scene Flow Estimation with 4D Automotive Radar
Improving Lidar-Based Semantic Segmentation of Top-View Grid Maps by Learning Features in Complementary Representations
Fast and Robust Ground Surface Estimation from LIDAR Measurements using Uniform B-Splines
Keyword: loop detection
There is no result
Keyword: autonomous driving
Continual BatchNorm Adaptation (CBNA) for Semantic Segmentation
Improving Lidar-Based Semantic Segmentation of Top-View Grid Maps by Learning Features in Complementary Representations
Chance-Constrained Iterative Linear-Quadratic Stochastic Games
A Unified Query-based Paradigm for Point Cloud Understanding
Keyword: mapping
Grasp Transfer for Deformable Objects by Functional Map Correspondence
Distributed Riemannian Optimization with Lazy Communication for Collaborative Geometric Estimation
Providing A Compiler Technology-Based Alternative For Big Data Application Infrastructures
FAST-LIVO: Fast and Tightly-coupled Sparse-Direct LiDAR-Inertial-Visual Odometry
Weakly Supervised Correspondence Learning
Vision-based Large-scale 3D Semantic Mapping for Autonomous Driving Applications
SFCaaS: Service Function Chains as a Service in NFV Environments
On the application of generative adversarial networks for nonlinear modal analysis
modal' space to the natural coordinate space, whilst also imposing orthogonality of the mode shapes. The mapping is achieved via the use of the recently-developed cycle-consistent generative adversarial network (cycle-GAN) and an assembly of neural networks targeted on maintaining the desired orthogonality. The method is tested on simulated data from structures with cubic nonlinearities and different numbers of degrees of freedom, and also on data from an experimental three-degree-of-freedom set-up with a column-bumper nonlinearity. The results reveal the method's efficiency in separating the
modes'. The method also provides a nonlinear superposition function, which in most cases has very good accuracy.Keyword: localization
Distributed Riemannian Optimization with Lazy Communication for Collaborative Geometric Estimation
FAST-LIVO: Fast and Tightly-coupled Sparse-Direct LiDAR-Inertial-Visual Odometry
Translation Invariant Global Estimation of Heading Angle Using Sinogram of LiDAR Point Cloud