Abstract
The interlock drive system generates traction by inserting narrow articulated spikes into the ground and by leveraging the soil's strength to resist horizontal draft forces. The system promises high tractive performance in low gravity environments where tires have little traction for lack of weight. At Earth and Space 2021 we reported the performance of such spikes on a silty clay loam, a cohesive soil. We found that in such soil, traction below a critical depth is provided by a zone of lateral soil failure. We also found that the articulation translates a horizontal draft force into a vertical penetration force strong enough to penetrate a narrow spike to a depth where the soil can sustain the draft force, in a self-regulating way. It is conceivable that a granular material like regolith or sand with little to no cohesive strength provides less vertical penetration resistance and less resistance to a horizontal draft force than a cohesive soil, which leads to the question of whether and how much tractive force an interlocking spike can generate on a granular material. Here we report on field trials that study different spike designs in dry and unsaturated moist sand. The results demonstrate that a loose granular material requires larger spikes than a cohesive soil, that these larger spikes penetrate dry and moist sand reliably, and that they promise good tractive efficiency. The trials indicate that on sand, a larger spike diameter can improve the pull/weight ratio without a loss of tractive performance.
Keyword: Visual inertial odometry
There is no result
Keyword: lidar
Accurate Fruit Localisation for Robotic Harvesting using High Resolution LiDAR-Camera Fusion
Abstract
Accurate depth-sensing plays a crucial role in securing a high success rate of robotic harvesting in natural orchard environments. Solid-state LiDAR (SSL), a recently introduced LiDAR technique, can perceive high-resolution geometric information of the scenes, which can be potential utilised to receive accurate depth information. Meanwhile, the fusion of the sensory information from LiDAR and camera can significantly enhance the sensing ability of the harvesting robots. This work introduces a LiDAR-camera fusion-based visual sensing and perception strategy to perform accurate fruit localisation for a harvesting robot in the apple orchards. Two SOTA extrinsic calibration methods, target-based and targetless-based, are applied and evaluated to obtain the accurate extrinsic matrix between the LiDAR and camera. With the extrinsic calibration, the point clouds and color images are fused to perform fruit localisation using a one-stage instance segmentation network. Experimental shows that LiDAR-camera achieves better quality on visual sensing in the natural environments. Meanwhile, introducing the LiDAR-camera fusion largely improves the accuracy and robustness of the fruit localisation. Specifically, the standard deviations of fruit localisation by using LiDAR-camera at 0.5 m, 1.2 m, and 1.8 m are 0.245, 0.227, and 0.275 cm respectively. These measurement error is only one one fifth of that from Realsense D455. Lastly, we have attached our visualised point cloud to demonstrate the highly accurate sensing method.
3D Object Detection with a Self-supervised Lidar Scene Flow Backbone
Authors: Emeç Erçelik, Ekim Yurtsever, Mingyu Liu, Zhijie Yang, Hanzhen Zhang, Pınar Topçam, Maximilian Listl, Yılmaz Kaan Çaylı, Alois Knoll
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Abstract
State-of-the-art 3D detection methods rely on supervised learning and large labelled datasets. However, annotating lidar data is resource-consuming, and depending only on supervised learning limits the applicability of trained models. Against this backdrop, here we propose using a self-supervised training strategy to learn a general point cloud backbone model for downstream 3D vision tasks. 3D scene flow can be estimated with self-supervised learning using cycle consistency, which removes labelled data requirements. Moreover, the perception of objects in the traffic scenarios heavily relies on making sense of the sparse data in the spatio-temporal context. Our main contribution leverages learned flow and motion representations and combines a self-supervised backbone with a 3D detection head focusing mainly on the relation between the scene flow and detection tasks. In this way, self-supervised scene flow training constructs point motion features in the backbone, which help distinguish objects based on their different motion patterns used with a 3D detection head. Experiments on KITTI and nuScenes benchmarks show that the proposed self-supervised pre-training increases 3D detection performance significantly.
Semantic localization in BIM using a 3D LiDAR sensor
Abstract
Conventional sensor-based localization relies on high-precision maps. These maps are generally built using specialized mapping techniques, which involve high labor and computational costs. While in the architectural, engineering and construction industry, building information models (BIMs) are available and can provide informative descriptions of environments. This paper explores an effective way to localize a mobile 3D LiDAR sensor in BIM considering both geometric and semantic properties. Specifically, we first convert original BIM to semantic maps using categories and locations of BIM elements. After that, a coarse-to-fine semantic localization is performed to align laser points to the map via iterative closest point registration. The experimental results show that the semantic localization can track the pose with only scan matching and present centimeter-level errors over 340 meters traveling, thus demonstrating the feasibility of the proposed mapping-free localization framework. The results also show that using semantic information can help reduce localization errors in BIM.
Keyword: loop detection
There is no result
Keyword: autonomous driving
ONCE-3DLanes: Building Monocular 3D Lane Detection
Authors: Fan Yan, Ming Nie, Xinyue Cai, Jianhua Han, Hang Xu, Zhen Yang, Chaoqiang Ye, Yanwei Fu, Michael Bi Mi, Li Zhang
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Abstract
We present ONCE-3DLanes, a real-world autonomous driving dataset with lane layout annotation in 3D space. Conventional 2D lane detection from a monocular image yields poor performance of following planning and control tasks in autonomous driving due to the case of uneven road. Predicting the 3D lane layout is thus necessary and enables effective and safe driving. However, existing 3D lane detection datasets are either unpublished or synthesized from a simulated environment, severely hampering the development of this field. In this paper, we take steps towards addressing these issues. By exploiting the explicit relationship between point clouds and image pixels, a dataset annotation pipeline is designed to automatically generate high-quality 3D lane locations from 2D lane annotations in 211K road scenes. In addition, we present an extrinsic-free, anchor-free method, called SALAD, regressing the 3D coordinates of lanes in image view without converting the feature map into the bird's-eye view (BEV). To facilitate future research on 3D lane detection, we benchmark the dataset and provide a novel evaluation metric, performing extensive experiments of both existing approaches and our proposed method. The aim of our work is to revive the interest of 3D lane detection in a real-world scenario. We believe our work can lead to the expected and unexpected innovations in both academia and industry.
Traffic Context Aware Data Augmentation for Rare Object Detection in Autonomous Driving
Abstract
Detection of rare objects (e.g., traffic cones, traffic barrels and traffic warning triangles) is an important perception task to improve the safety of autonomous driving. Training of such models typically requires a large number of annotated data which is expensive and time consuming to obtain. To address the above problem, an emerging approach is to apply data augmentation to automatically generate cost-free training samples. In this work, we propose a systematic study on simple Copy-Paste data augmentation for rare object detection in autonomous driving. Specifically, local adaptive instance-level image transformation is introduced to generate realistic rare object masks from source domain to the target domain. Moreover, traffic scene context is utilized to guide the placement of masks of rare objects. To this end, our data augmentation generates training data with high quality and realistic characteristics by leveraging both local and global consistency. In addition, we build a new dataset named NM10k consisting 10k training images, 4k validation images and the corresponding labels with a diverse range of scenarios in autonomous driving. Experiments on NM10k show that our method achieves promising results on rare object detection. We also present a thorough study to illustrate the effectiveness of our local-adaptive and global constraints based Copy-Paste data augmentation for rare object detection. The data, development kit and more information of NM10k dataset are available online at: \url{https://nullmax-vision.github.io}.
MUTR3D: A Multi-camera Tracking Framework via 3D-to-2D Queries
Abstract
Accurate and consistent 3D tracking from multiple cameras is a key component in a vision-based autonomous driving system. It involves modeling 3D dynamic objects in complex scenes across multiple cameras. This problem is inherently challenging due to depth estimation, visual occlusions, appearance ambiguity, etc. Moreover, objects are not consistently associated across time and cameras. To address that, we propose an end-to-end \textbf{MU}lti-camera \textbf{TR}acking framework called MUTR3D. In contrast to prior works, MUTR3D does not explicitly rely on the spatial and appearance similarity of objects. Instead, our method introduces \textit{3D track query} to model spatial and appearance coherent track for each object that appears in multiple cameras and multiple frames. We use camera transformations to link 3D trackers with their observations in 2D images. Each tracker is further refined according to the features that are obtained from camera images. MUTR3D uses a set-to-set loss to measure the difference between the predicted tracking results and the ground truths. Therefore, it does not require any post-processing such as non-maximum suppression and/or bounding box association. MUTR3D outperforms state-of-the-art methods by 5.3 AMOTA on the nuScenes dataset. Code is available at: \url{https://github.com/a1600012888/MUTR3D}.
Cross-Domain Correlation Distillation for Unsupervised Domain Adaptation in Nighttime Semantic Segmentation
Abstract
The performance of nighttime semantic segmentation is restricted by the poor illumination and a lack of pixel-wise annotation, which severely limit its application in autonomous driving. Existing works, e.g., using the twilight as the intermediate target domain to perform the adaptation from daytime to nighttime, may fail to cope with the inherent difference between datasets caused by the camera equipment and the urban style. Faced with these two types of domain shifts, i.e., the illumination and the inherent difference of the datasets, we propose a novel domain adaptation framework via cross-domain correlation distillation, called CCDistill. The invariance of illumination or inherent difference between two images is fully explored so as to make up for the lack of labels for nighttime images. Specifically, we extract the content and style knowledge contained in features, calculate the degree of inherent or illumination difference between two images. The domain adaptation is achieved using the invariance of the same kind of difference. Extensive experiments on Dark Zurich and ACDC demonstrate that CCDistill achieves the state-of-the-art performance for nighttime semantic segmentation. Notably, our method is a one-stage domain adaptation network which can avoid affecting the inference time. Our implementation is available at https://github.com/ghuan99/CCDistill.
Keyword: mapping
Loss Function Entropy Regularization for Diverse Decision Boundaries
Abstract
Is it possible to train several classifiers to perform meaningful crowd-sourcing to produce a better prediction label set without any ground-truth annotation? In this paper, we will attempt to modify the contrastive learning objectives to automatically train a self-complementing ensemble to produce a state-of-the-art prediction on the CIFAR10 and CIFAR100-20 task. This paper will present a remarkably simple method to modify a single unsupervised classification pipeline to automatically generate an ensemble of neural networks with varied decision boundaries to learn a larger feature set of classes. Loss Function Entropy Regularization (LFER), are regularization terms to be added upon the pre-training and contrastive learning objective functions, gives us a gear to modify the entropy state of the output space of unsupervised learning, thereby diversifying the latent representation of decision boundaries of neural networks. Ensemble trained with LFER have higher successful prediction accuracy for samples near decision boundaries. LFER is a effective gear to perturb decision boundaries, and has proven to be able to produce classifiers that beat state-of-the-art at contrastive learning stage. Experiments show that LFER can produce an ensemble where each have accuracy comparable to the state-of-the-art, yet have each have varied latent decision boundaries. It allows us to essence perform meaningful verification for samples near decision boundaries, encouraging correct classification of near-boundary samples. By compounding the probability of correct prediction of a single sample amongst an ensemble of neural network trained, our method is able to improve upon a single classifier by denoising and affirming correct feature mappings.
Stable Reinforcement Learning for Optimal Frequency Control: A Distributed Averaging-Based Integral Approach
Authors: Yan Jiang, Wenqi Cui, Baosen Zhang, Jorge Cortés
Abstract
Frequency control plays a pivotal role in reliable power system operations. It is conventionally performed in a hierarchical way that first rapidly stabilizes the frequency deviations and then slowly recovers the nominal frequency. However, as the generation mix shifts from synchronous generators to renewable resources, power systems experience larger and faster frequency fluctuations due to the loss of inertia, which adversely impacts the frequency stability. This has motivated active research in algorithms that jointly address frequency degradation and economic efficiency in a fast timescale, among which the distributed averaging-based integral (DAI) control is a notable one that sets controllable power injections directly proportional to the integrals of frequency deviation and economic inefficiency signals. Nevertheless, DAI do not typically consider the transient performance of the system following power disturbances and has been restricted to quadratic operational cost functions. This manuscript aims to leverage nonlinear optimal controllers to simultaneously achieve optimal transient frequency control and find the most economic power dispatch for frequency restoration. To this end, we integrate reinforcement learning (RL) to the classic DAI, which results in RL-DAI. Specifically, we use RL to learn a neural network-based control policy mapping from the integral variables of DAI to the controllable power injections which provides optimal transient frequency control, while DAI inherently ensures the frequency restoration and optimal economic dispatch. Compared to existing methods, we provide provable guarantees on the stability of the learned controllers and extend allowable cost functions to a much larger class. Simulations on the 39-bus New England system illustrate our results.
Closed-form max-min power control for some cellular and cell-free massive MIMO networks
Authors: Lorenzo Miretti, Renato L. G. Cavalcante, Slawomir Stanczak, Martin Schubert, Ronald Boehnke, Wen Xu
Subjects: Information Theory (cs.IT); Signal Processing (eess.SP)
Abstract
Many common instances of power control problems for cellular and cell-free massive MIMO networks can be interpreted as max-min utility optimization problems involving affine interference mappings and polyhedral constraints. We show that these problems admit a closed-form solution which depends on the spectral radius of known matrices. In contrast, previous solutions in the literature have been indirectly obtained using iterative algorithms based on the bisection method, or on fixed-point iterations. Furthermore, we also show an asymptotically tight bound for the optimal utility, which in turn provides a simple rule of thumb for evaluating whether the network is operating in the noise or interference limited regime. We finally illustrate our results by focusing on classical max-min fair power control for cell-free massive MIMO networks.
Training High-Performance Low-Latency Spiking Neural Networks by Differentiation on Spike Representation
Abstract
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware. However, it is a challenge to efficiently train SNNs due to their non-differentiability. Most existing methods either suffer from high latency (i.e., long simulation time steps), or cannot achieve as high performance as Artificial Neural Networks (ANNs). In this paper, we propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance that is competitive to ANNs yet with low latency. First, we encode the spike trains into spike representation using (weighted) firing rate coding. Based on the spike representation, we systematically derive that the spiking dynamics with common neural models can be represented as some sub-differentiable mapping. With this viewpoint, our proposed DSR method trains SNNs through gradients of the mapping and avoids the common non-differentiability problem in SNN training. Then we analyze the error when representing the specific mapping with the forward computation of the SNN. To reduce such error, we propose to train the spike threshold in each layer, and to introduce a new hyperparameter for the neural models. With these components, the DSR method can achieve state-of-the-art SNN performance with low latency on both static and neuromorphic datasets, including CIFAR-10, CIFAR-100, ImageNet, and DVS-CIFAR10.
Generalized Reference Kernel for One-class Classification
Abstract
In this paper, we formulate a new generalized reference kernel hoping to improve the original base kernel using a set of reference vectors. Depending on the selected reference vectors, our formulation shows similarities to approximate kernels, random mappings, and Non-linear Projection Trick. Focusing on small-scale one-class classification, our analysis and experimental results show that the new formulation provides approaches to regularize, adjust the rank, and incorporate additional information into the kernel itself, leading to improved one-class classification accuracy.
Game-Theoretic Planning for Autonomous Driving among Risk-Aware Human Drivers
Authors: Rohan Chandra, Mingyu Wang, Mac Schwager, Dinesh Manocha
Abstract
We present a novel approach for risk-aware planning with human agents in multi-agent traffic scenarios. Our approach takes into account the wide range of human driver behaviors on the road, from aggressive maneuvers like speeding and overtaking, to conservative traits like driving slowly and conforming to the right-most lane. In our approach, we learn a mapping from a data-driven human driver behavior model called the CMetric to a driver's entropic risk preference. We then use the derived risk preference within a game-theoretic risk-sensitive planner to model risk-aware interactions among human drivers and an autonomous vehicle in various traffic scenarios. We demonstrate our method in a merging scenario, where our results show that the final trajectories obtained from the risk-aware planner generate desirable emergent behaviors. Particularly, our planner recognizes aggressive human drivers and yields to them while maintaining a greater distance from them. In a user study, participants were able to distinguish between aggressive and conservative simulated drivers based on trajectories generated from our risk-sensitive planner. We also observe that aggressive human driving results in more frequent lane-changing in the planner. Finally, we compare the performance of our modified risk-aware planner with existing methods and show that modeling human driver behavior leads to safer navigation.
Thermodynamically Consistent Machine-Learned Internal State Variable Approach for Data-Driven Modeling of Path-Dependent Materials
Abstract
Characterization and modeling of path-dependent behaviors of complex materials by phenomenological models remains challenging due to difficulties in formulating mathematical expressions and internal state variables (ISVs) governing path-dependent behaviors. Data-driven machine learning models, such as deep neural networks and recurrent neural networks (RNNs), have become viable alternatives. However, pure black-box data-driven models mapping inputs to outputs without considering the underlying physics suffer from unstable and inaccurate generalization performance. This study proposes a machine-learned physics-informed data-driven constitutive modeling approach for path-dependent materials based on the measurable material states. The proposed data-driven constitutive model is designed with the consideration of universal thermodynamics principles, where the ISVs essential to the material path-dependency are inferred automatically from the hidden state of RNNs. The RNN describing the evolution of the data-driven machine-learned ISVs follows the thermodynamics second law. To enhance the robustness and accuracy of RNN models, stochasticity is introduced to model training. The effects of the number of RNN history steps, the internal state dimension, the model complexity, and the strain increment on model performances have been investigated. The effectiveness of the proposed method is evaluated by modeling soil material behaviors under cyclic shear loading using experimental stress-strain data.
Variation-cognizant Probabilistic Power Flow Analysis via Multi-task Learning
Abstract
With an increasing high penetration of solar photovoltaic generation in electric power grids, voltage phasors and branch power flows experience more severe fluctuations. In this context, probabilistic power flow (PPF) study aims at characterizing the statistical properties of the state of the system with respect to the random power injections. To avoid repeated power flow calculations involved in PPF study, the present paper leverages regression algorithms and neural networks to improve the estimation performance and speed up the computation. Specifically, based on the variation level of the voltage magnitude at each bus, we develop either a linear regression or a fully connected neural network to approximate the inverse AC power flow mappings. The proposed multi-task learning technique further improves the accuracy of branch flow estimation by incorporating the errors of voltage angle differences into the loss function design. Tested on IEEE-300 and IEEE-1354 bus systems with real data, the proposed methods achieve better performance in estimating voltage phasors and branch flows.
Deep Video Harmonization with Color Mapping Consistency
Abstract
Video harmonization aims to adjust the foreground of a composite video to make it compatible with the background. So far, video harmonization has only received limited attention and there is no public dataset for video harmonization. In this work, we construct a new video harmonization dataset HYouTube by adjusting the foreground of real videos to create synthetic composite videos. Moreover, we consider the temporal consistency in video harmonization task. Unlike previous works which establish the spatial correspondence, we design a novel framework based on the assumption of color mapping consistency, which leverages the color mapping of neighboring frames to refine the current frame. Extensive experiments on our HYouTube dataset prove the effectiveness of our proposed framework. Our dataset and code are available at https://github.com/bcmi/Video-Harmonization-Dataset-HYouTube.
Semantic localization in BIM using a 3D LiDAR sensor
Abstract
Conventional sensor-based localization relies on high-precision maps. These maps are generally built using specialized mapping techniques, which involve high labor and computational costs. While in the architectural, engineering and construction industry, building information models (BIMs) are available and can provide informative descriptions of environments. This paper explores an effective way to localize a mobile 3D LiDAR sensor in BIM considering both geometric and semantic properties. Specifically, we first convert original BIM to semantic maps using categories and locations of BIM elements. After that, a coarse-to-fine semantic localization is performed to align laser points to the map via iterative closest point registration. The experimental results show that the semantic localization can track the pose with only scan matching and present centimeter-level errors over 340 meters traveling, thus demonstrating the feasibility of the proposed mapping-free localization framework. The results also show that using semantic information can help reduce localization errors in BIM.
A Novel Approach to Fairness in Automated Decision-Making using Affective Normalization
Authors: Jesse Hoey, Gabrielle Chan
Subjects: Computers and Society (cs.CY); Artificial Intelligence (cs.AI)
Abstract
Any decision, such as one about who to hire, involves two components. First, a rational component, i.e., they have a good education, they speak clearly. Second, an affective component, based on observables such as visual features of race and gender, and possibly biased by stereotypes. Here we propose a method for measuring the affective, socially biased, component, thus enabling its removal. That is, given a decision-making process, these affective measurements remove the affective bias in the decision, rendering it fair across a set of categories defined by the method itself. We thus propose that this may solve three key problems in intersectional fairness: (1) the definition of categories over which fairness is a consideration; (2) an infinite regress into smaller and smaller groups; and (3) ensuring a fair distribution based on basic human rights or other prior information. The primary idea in this paper is that fairness biases can be measured using affective coherence, and that this can be used to normalize outcome mappings. We aim for this conceptual work to expose a novel method for handling fairness problems that uses emotional coherence as an independent measure of bias that goes beyond statistical parity.
Keyword: localization
Improving Visual Grounding with Visual-Linguistic Verification and Iterative Reasoning
Authors: Li Yang, Yan Xu, Chunfeng Yuan, Wei Liu, Bing Li, Weiming Hu
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Abstract
Visual grounding is a task to locate the target indicated by a natural language expression. Existing methods extend the generic object detection framework to this problem. They base the visual grounding on the features from pre-generated proposals or anchors, and fuse these features with the text embeddings to locate the target mentioned by the text. However, modeling the visual features from these predefined locations may fail to fully exploit the visual context and attribute information in the text query, which limits their performance. In this paper, we propose a transformer-based framework for accurate visual grounding by establishing text-conditioned discriminative features and performing multi-stage cross-modal reasoning. Specifically, we develop a visual-linguistic verification module to focus the visual features on regions relevant to the textual descriptions while suppressing the unrelated areas. A language-guided feature encoder is also devised to aggregate the visual contexts of the target object to improve the object's distinctiveness. To retrieve the target from the encoded visual features, we further propose a multi-stage cross-modal decoder to iteratively speculate on the correlations between the image and text for accurate target localization. Extensive experiments on five widely used datasets validate the efficacy of our proposed components and demonstrate state-of-the-art performance. Our code is public at https://github.com/yangli18/VLTVG.
Convex Combination Consistency between Neighbors for Weakly-supervised Action Localization
Authors: Qinying Liu, Zilei Wang, Ruoxi Chen, Zhilin Li
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Abstract
In weakly-supervised temporal action localization (WS-TAL), the methods commonly follow the "localization by classification" procedure, which uses the snippet predictions to form video class scores and then optimizes a video classification loss. In this procedure, the snippet predictions (or snippet attention weights) are used to separate foreground and background. However, the snippet predictions are usually inaccurate due to absence of frame-wise labels, and then the overall performance is hindered. In this paper, we propose a novel C$^3$BN to achieve robust snippet predictions. C$^3$BN includes two key designs by exploring the inherent characteristics of video data. First, because of the natural continuity of adjacent snippets, we propose a micro data augmentation strategy to increase the diversity of snippets with convex combination of adjacent snippets. Second, we propose a macro-micro consistency regularization strategy to force the model to be invariant (or equivariant) to the transformations of snippets with respect to video semantics, snippet predictions and snippet features. Experimental results demonstrate the effectiveness of our proposed method on top of baselines for the WS-TAL tasks with video-level and point-level supervision.
Semantic localization in BIM using a 3D LiDAR sensor
Abstract
Conventional sensor-based localization relies on high-precision maps. These maps are generally built using specialized mapping techniques, which involve high labor and computational costs. While in the architectural, engineering and construction industry, building information models (BIMs) are available and can provide informative descriptions of environments. This paper explores an effective way to localize a mobile 3D LiDAR sensor in BIM considering both geometric and semantic properties. Specifically, we first convert original BIM to semantic maps using categories and locations of BIM elements. After that, a coarse-to-fine semantic localization is performed to align laser points to the map via iterative closest point registration. The experimental results show that the semantic localization can track the pose with only scan matching and present centimeter-level errors over 340 meters traveling, thus demonstrating the feasibility of the proposed mapping-free localization framework. The results also show that using semantic information can help reduce localization errors in BIM.
Keyword: SLAM
There is no result
Keyword: Visual inertial
There is no result
Keyword: livox
There is no result
Keyword: loam
Traction of Interlocking Spikes on a Granular Material
Keyword: Visual inertial odometry
There is no result
Keyword: lidar
Accurate Fruit Localisation for Robotic Harvesting using High Resolution LiDAR-Camera Fusion
3D Object Detection with a Self-supervised Lidar Scene Flow Backbone
Semantic localization in BIM using a 3D LiDAR sensor
Keyword: loop detection
There is no result
Keyword: autonomous driving
ONCE-3DLanes: Building Monocular 3D Lane Detection
Traffic Context Aware Data Augmentation for Rare Object Detection in Autonomous Driving
MUTR3D: A Multi-camera Tracking Framework via 3D-to-2D Queries
Cross-Domain Correlation Distillation for Unsupervised Domain Adaptation in Nighttime Semantic Segmentation
Keyword: mapping
Loss Function Entropy Regularization for Diverse Decision Boundaries
Stable Reinforcement Learning for Optimal Frequency Control: A Distributed Averaging-Based Integral Approach
Closed-form max-min power control for some cellular and cell-free massive MIMO networks
Training High-Performance Low-Latency Spiking Neural Networks by Differentiation on Spike Representation
Generalized Reference Kernel for One-class Classification
Game-Theoretic Planning for Autonomous Driving among Risk-Aware Human Drivers
Thermodynamically Consistent Machine-Learned Internal State Variable Approach for Data-Driven Modeling of Path-Dependent Materials
Variation-cognizant Probabilistic Power Flow Analysis via Multi-task Learning
Deep Video Harmonization with Color Mapping Consistency
Semantic localization in BIM using a 3D LiDAR sensor
A Novel Approach to Fairness in Automated Decision-Making using Affective Normalization
Keyword: localization
Improving Visual Grounding with Visual-Linguistic Verification and Iterative Reasoning
Convex Combination Consistency between Neighbors for Weakly-supervised Action Localization
Semantic localization in BIM using a 3D LiDAR sensor