Loop Closure Prioritization for Efficient and Scalable Multi-Robot SLAM
Authors: Christopher E. Denniston, Yun Chang, Andrzej Reinke, Kamak Ebadi, Gaurav S. Sukhatme, Luca Carlone, Benjamin Morrell, Ali-akbar Agha-mohammadi
Abstract
Multi-robot SLAM systems in GPS-denied environments require loop closures to maintain a drift-free centralized map. With an increasing number of robots and size of the environment, checking and computing the transformation for all the loop closure candidates becomes computationally infeasible. In this work, we describe a loop closure module that is able to prioritize which loop closures to compute based on the underlying pose graph, the proximity to known beacons, and the characteristics of the point clouds. We validate this system in the context of the DARPA Subterranean Challenge and on numerous challenging underground datasets and demonstrate the ability of this system to generate and maintain a map with low error. We find that our proposed techniques are able to select effective loop closures which results in 51% mean reduction in median error when compared to an odometric solution and 75% mean reduction in median error when compared to a baseline version of this system with no prioritization. We also find our proposed system is able to find a lower error in the mission time of one hour when compared to a system that processes every possible loop closure in four and a half hours.
FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech
Authors: Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang, Vera Axelrod, Siddharth Dalmia, Jason Riesa, Clara Rivera, Ankur Bapna
Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG); Sound (cs.SD); Audio and Speech Processing (eess.AS)
Abstract
We introduce FLEURS, the Few-shot Learning Evaluation of Universal Representations of Speech benchmark. FLEURS is an n-way parallel speech dataset in 102 languages built on top of the machine translation FLoRes-101 benchmark, with approximately 12 hours of speech supervision per language. FLEURS can be used for a variety of speech tasks, including Automatic Speech Recognition (ASR), Speech Language Identification (Speech LangID), Translation and Retrieval. In this paper, we provide baselines for the tasks based on multilingual pre-trained models like mSLAM. The goal of FLEURS is to enable speech technology in more languages and catalyze research in low-resource speech understanding.
Wildcat: Online Continuous-Time 3D Lidar-Inertial SLAM
Authors: Milad Ramezani, Kasra Khosoussi, Gavin Catt, Peyman Moghadam, Jason Williams, Paulo Borges, Fred Pauling, Navinda Kottege
Abstract
We present Wildcat, a novel online 3D lidar-inertial SLAM system with exceptional versatility and robustness. At its core, Wildcat combines a robust real-time lidar-inertial odometry module, utilising a continuous-time trajectory representation, with an efficient pose-graph optimisation module that seamlessly supports both the single- and multi-agent settings. The robustness of Wildcat was recently demonstrated in the DARPA Subterranean Challenge where it outperformed other SLAM systems across various types of sensing-degraded and perceptually challenging environments. In this paper, we extensively evaluate Wildcat in a diverse set of new and publicly available real-world datasets and showcase its superior robustness and versatility over two existing state-of-the-art lidar-inertial SLAM systems.
Keyword: odometry
Wildcat: Online Continuous-Time 3D Lidar-Inertial SLAM
Authors: Milad Ramezani, Kasra Khosoussi, Gavin Catt, Peyman Moghadam, Jason Williams, Paulo Borges, Fred Pauling, Navinda Kottege
Abstract
We present Wildcat, a novel online 3D lidar-inertial SLAM system with exceptional versatility and robustness. At its core, Wildcat combines a robust real-time lidar-inertial odometry module, utilising a continuous-time trajectory representation, with an efficient pose-graph optimisation module that seamlessly supports both the single- and multi-agent settings. The robustness of Wildcat was recently demonstrated in the DARPA Subterranean Challenge where it outperformed other SLAM systems across various types of sensing-degraded and perceptually challenging environments. In this paper, we extensively evaluate Wildcat in a diverse set of new and publicly available real-world datasets and showcase its superior robustness and versatility over two existing state-of-the-art lidar-inertial SLAM systems.
Keyword: livox
There is no result
Keyword: loam
There is no result
Keyword: lidar
sat2pc: Estimating Point Cloud of Building Roofs from 2D Satellite Images
Abstract
Three-dimensional (3D) urban models have gained interest because of their applications in many use-cases such as urban planning and virtual reality. However, generating these 3D representations requires LiDAR data, which are not always readily available. Thus, the applicability of automated 3D model generation algorithms is limited to a few locations. In this paper, we propose sat2pc, a deep learning architecture that predicts the point cloud of a building roof from a single 2D satellite image. Our architecture combines Chamfer distance and EMD loss, resulting in better 2D to 3D performance. We extensively evaluate our model and perform ablation studies on a building roof dataset. Our results show that sat2pc was able to outperform existing baselines by at least 18.6%. Further, we show that the predicted point cloud captures more detail and geometric characteristics than other baselines.
From Pedestrian Detection to Crosswalk Estimation: An EM Algorithm and Analysis on Diverse Datasets
Authors: Ross Greer, Mohan Trivedi
Subjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Abstract
In this work, we contribute an EM algorithm for estimation of corner points and linear crossing segments for both marked and unmarked pedestrian crosswalks using the detections of pedestrians from processed LiDAR point clouds or camera images. We demonstrate the algorithmic performance by analyzing three real-world datasets containing multiple periods of data collection for four-corner and two-corner intersections with marked and unmarked crosswalks. Additionally, we include a Python video tool to visualize the crossing parameter estimation, pedestrian trajectories, and phase intervals in our public source code.
Wildcat: Online Continuous-Time 3D Lidar-Inertial SLAM
Authors: Milad Ramezani, Kasra Khosoussi, Gavin Catt, Peyman Moghadam, Jason Williams, Paulo Borges, Fred Pauling, Navinda Kottege
Abstract
We present Wildcat, a novel online 3D lidar-inertial SLAM system with exceptional versatility and robustness. At its core, Wildcat combines a robust real-time lidar-inertial odometry module, utilising a continuous-time trajectory representation, with an efficient pose-graph optimisation module that seamlessly supports both the single- and multi-agent settings. The robustness of Wildcat was recently demonstrated in the DARPA Subterranean Challenge where it outperformed other SLAM systems across various types of sensing-degraded and perceptually challenging environments. In this paper, we extensively evaluate Wildcat in a diverse set of new and publicly available real-world datasets and showcase its superior robustness and versatility over two existing state-of-the-art lidar-inertial SLAM systems.
Keyword: loop detection
There is no result
Keyword: autonomous driving
Structure Aware and Class Balanced 3D Object Detection on nuScenes Dataset
Abstract
3-D object detection is pivotal for autonomous driving. Point cloud based methods have become increasingly popular for 3-D object detection, owing to their accurate depth information. NuTonomy's nuScenes dataset greatly extends commonly used datasets such as KITTI in size, sensor modalities, categories, and annotation numbers. However, it suffers from severe class imbalance. The Class-balanced Grouping and Sampling paper addresses this issue and suggests augmentation and sampling strategy. However, the localization precision of this model is affected by the loss of spatial information in the downscaled feature maps. We propose to enhance the performance of the CBGS model by designing an auxiliary network, that makes full use of the structure information of the 3D point cloud, in order to improve the localization accuracy. The detachable auxiliary network is jointly optimized by two point-level supervisions, namely foreground segmentation and center estimation. The auxiliary network does not introduce any extra computation during inference, since it can be detached at test time.
Keyword: mapping
PINO-MBD: Physics-informed Neural Operator for Solving Coupled ODEs in Multi-body Dynamics
Authors: Wenhao Ding, Qing He, Hanghang Tong, Ping Wang
Subjects: Computational Engineering, Finance, and Science (cs.CE)
Abstract
In multi-body dynamics, the motion of a complicated physical object is described as a coupled ordinary differential equation system with multiple unknown solutions. Engineers need to constantly adjust the object to meet requirements at the design stage, where a highly efficient solver is needed. The rise of machine learning-based partial differential equation solvers can meet this need. These solvers can be classified into two categories: approximating the solution function (Physics-informed neural network) and learning the solution operator (Neural operator). The recently proposed physics-informed neural operator (PINO) gains advantages from both categories by embedding physics equations into the loss function of a neural operator. Following this state-of-art concept, we propose the physics-informed neural operator for coupled ODEs in multi-body dynamics (PINO-MBD), which learns the mapping between parameter spaces and solution spaces. Once PINO-MBD is trained, only one forward pass of the network is required to obtain the solutions for a new instance with different parameters. To handle the difficulty that coupled ODEs contain multiple solutions (instead of only one in normal PDE problems), two new physics embedding methods are also proposed. The experimental results on classic vehicle-track coupled dynamics problem show state-of-art performance not only on solutions but also the first and second derivatives of solutions.
Constant Curvature Curve Tube Codes for Low-Latency Analog Error Correction
Authors: Robert M. Taylor Jr., Anders M. Buvarp, Kumar Vijay Mishra, Lamine M. Mili, Amir I. Zaghloul
Subjects: Information Theory (cs.IT); Signal Processing (eess.SP)
Abstract
Recent research in ultra-reliable and low latency communications (URLLC) for future wireless systems has spurred interest in short block-length codes. In this context, we introduce a new class of high-dimension constant curvature curves codes for analog error correction of independent continuous-alphabet uniform sources. In particular, we employ the circumradius function from knot theory to prescribe insulating tubes about the centerline of constant curvature curves. We then use tube packing density within a hypersphere to optimize the curve parameters. The resulting constant curvature curve tube (C3T) codes possess the smallest possible latency -- block-length is unity under bandwidth expansion mapping. Further, the codes provide within $5$ dB of Shannon's optimal performance theoretically achievable at the lower range of signal-to-noise ratios and BW expansion factors. We exploit the fact that the C3T encoder locus is a geodesic on a flat torus in even dimensions and a generalized helix in odd dimensions to obtain useful code properties and provide noise-reducing projections at the decoder stage. We validate the performance of these codes using fully connected multi-layer perceptrons that approximate maximum likelihood decoders. For the case of independent and identically distributed uniform sources, we show that analog error correction is advantageous over digital coding in terms of required block-lengths needed to match {signal-to-noise ratio, source-to-distortion ratio} tuples. The best possible digital codes require two to three orders of magnitude higher latency compared to C3T codes, thereby demonstrating the latter's utility for URLLC.
First Contact: Unsupervised Human-Machine Co-Adaptation via Mutual Information Maximization
Authors: Siddharth Reddy, Sergey Levine, Anca D. Dragan
Abstract
How can we train an assistive human-machine interface (e.g., an electromyography-based limb prosthesis) to translate a user's raw command signals into the actions of a robot or computer when there is no prior mapping, we cannot ask the user for supervision in the form of action labels or reward feedback, and we do not have prior knowledge of the tasks the user is trying to accomplish? The key idea in this paper is that, regardless of the task, when an interface is more intuitive, the user's commands are less noisy. We formalize this idea as a completely unsupervised objective for optimizing interfaces: the mutual information between the user's command signals and the induced state transitions in the environment. To evaluate whether this mutual information score can distinguish between effective and ineffective interfaces, we conduct an observational study on 540K examples of users operating various keyboard and eye gaze interfaces for typing, controlling simulated robots, and playing video games. The results show that our mutual information scores are predictive of the ground-truth task completion metrics in a variety of domains, with an average Spearman's rank correlation of 0.43. In addition to offline evaluation of existing interfaces, we use our unsupervised objective to learn an interface from scratch: we randomly initialize the interface, have the user attempt to perform their desired tasks using the interface, measure the mutual information score, and update the interface to maximize mutual information through reinforcement learning. We evaluate our method through a user study with 12 participants who perform a 2D cursor control task using a perturbed mouse, and an experiment with one user playing the Lunar Lander game using hand gestures. The results show that we can learn an interface from scratch, without any user supervision or prior knowledge of tasks, in under 30 minutes.
Conditional set generation using Seq2seq models
Authors: Aman Madaan, Dheeraj Rajagopal, Niket Tandon, Yiming Yang, Antoine Bosselut
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)
Abstract
Conditional set generation learns a mapping from an input sequence of tokens to a set. Several NLP tasks, such as entity typing and dialogue emotion tagging, are instances of set generation. Sequence-to-sequence~(Seq2seq) models are a popular choice to model set generation, but they treat a set as a sequence and do not fully leverage its key properties, namely order-invariance and cardinality. We propose a novel algorithm for effectively sampling informative orders over the combinatorial space of label orders. Further, we jointly model the set cardinality and output by adding the set size as the first element and taking advantage of the autoregressive factorization used by Seq2seq models. Our method is a model-independent data augmentation approach that endows any Seq2seq model with the signals of order-invariance and cardinality. Training a Seq2seq model on this new augmented data~(without any additional annotations) gets an average relative improvement of 20% for four benchmarks datasets across models spanning from BART-base, T5-xxl, and GPT-3.
NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results
Authors: Eduardo Pérez-Pellitero, Sibi Catley-Chandar, Richard Shaw, Aleš Leonardis, Radu Timofte, Zexin Zhang, Cen Liu, Yunbo Peng, Yue Lin, Gaocheng Yu, Jin Zhang, Zhe Ma, Hongbin Wang, Xiangyu Chen, Xintao Wang, Haiwei Wu, Lin Liu, Chao Dong, Jiantao Zhou, Qingsen Yan, Song Zhang, Weiye Chen, Yuhang Liu, Zhen Zhang, Yanning Zhang, Javen Qinfeng Shi, Dong Gong, Dan Zhu, Mengdi Sun, Guannan Chen, Yang Hu, Haowei Li, Baozhu Zou, Zhen Liu, Wenjie Lin, Ting Jiang, Chengzhi Jiang, Xinpeng Li, Mingyan Han, Haoqiang Fan, Jian Sun, Shuaicheng Liu, Juan Marín-Vega, Michael Sloth, Peter Schneider-Kamp, Richard Röttger, Chunyang Li, Long Bao, Gang He, Ziyao Xu, Li Xu, Gen Zhan, Ming Sun, Xing Wen, Junlin Li, Jinjing Li, Chenghua Li, Ruipeng Gang, Fangya Li, Chenming Liu, Shuang Feng, Fei Lei, et al. (31 additional authors not shown)
Subjects: Computer Vision and Pattern Recognition (cs.CV); Image and Video Processing (eess.IV)
Abstract
This paper reviews the challenge on constrained high dynamic range (HDR) imaging that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2022. This manuscript focuses on the competition set-up, datasets, the proposed methods and their results. The challenge aims at estimating an HDR image from multiple respective low dynamic range (LDR) observations, which might suffer from under- or over-exposed regions and different sources of noise. The challenge is composed of two tracks with an emphasis on fidelity and complexity constraints: In Track 1, participants are asked to optimize objective fidelity scores while imposing a low-complexity constraint (i.e. solutions can not exceed a given number of operations). In Track 2, participants are asked to minimize the complexity of their solutions while imposing a constraint on fidelity scores (i.e. solutions are required to obtain a higher fidelity score than the prescribed baseline). Both tracks use the same data and metrics: Fidelity is measured by means of PSNR with respect to a ground-truth HDR image (computed both directly and with a canonical tonemapping operation), while complexity metrics include the number of Multiply-Accumulate (MAC) operations and runtime (in seconds).
Asking the Right Questions in Low Resource Template Extraction
Authors: Nils Holzenberger, Yunmo Chen, Benjamin Van Durme
Abstract
Information Extraction (IE) researchers are mapping tasks to Question Answering (QA) in order to leverage existing large QA resources, and thereby improve data efficiency. Especially in template extraction (TE), mapping an ontology to a set of questions can be more time-efficient than collecting labeled examples. We ask whether end users of TE systems can design these questions, and whether it is beneficial to involve an NLP practitioner in the process. We compare questions to other ways of phrasing natural language prompts for TE. We propose a novel model to perform TE with prompts, and find it benefits from questions over other styles of prompts, and that they do not require an NLP background to author.
Large Language Models are Zero-Shot Clinical Information Extractors
Authors: Monica Agrawal, Stefan Hegselmann, Hunter Lang, Yoon Kim, David Sontag
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)
Abstract
We show that large language models, such as GPT-3, perform well at zero-shot information extraction from clinical text despite not being trained specifically for the clinical domain. We present several examples showing how to use these models as tools for the diverse tasks of (i) concept disambiguation, (ii) evidence extraction, (iii) coreference resolution, and (iv) concept extraction, all on clinical text. The key to good performance is the use of simple task-specific programs that map from the language model outputs to the label space of the task. We refer to these programs as resolvers, a generalization of the verbalizer, which defines a mapping between output tokens and a discrete label space. We show in our examples that good resolvers share common components (e.g., "safety checks" that ensure the language model outputs faithfully match the input data), and that the common patterns across tasks make resolvers lightweight and easy to create. To better evaluate these systems, we also introduce two new datasets for benchmarking zero-shot clinical information extraction based on manual relabeling of the CASI dataset (Moon et al., 2014) with labels for new tasks. On the clinical extraction tasks we studied, the GPT-3 + resolver systems significantly outperform existing zero- and few-shot baselines.
These Maps Are Made For Walking: Real-Time Terrain Property Estimation for Mobile Robots
Authors: Parker Ewen, Adam Li, Yuxin Chen, Steven Hong, Ram Vasudevan
Subjects: Robotics (cs.RO); Image and Video Processing (eess.IV)
Abstract
The equations of motion governing mobile robots are dependent on terrain properties such as the coefficient of friction, and contact model parameters. Estimating these properties is thus essential for robotic navigation. Ideally any map estimating terrain properties should run in real time, mitigate sensor noise, and provide probability distributions of the aforementioned properties, thus enabling risk-mitigating navigation and planning. This paper addresses these needs and proposes a Bayesian inference framework for semantic mapping which recursively estimates both the terrain surface profile and a probability distribution for terrain properties using data from a single RGB-D camera. The proposed framework is evaluated in simulation against other semantic mapping methods and is shown to outperform these state-of-the-art methods in terms of correctly estimating simulated ground-truth terrain properties when evaluated using a precision-recall curve and the Kullback-Leibler divergence test. Additionally, the proposed method is deployed on a physical legged robotic platform in both indoor and outdoor environments, and we show our method correctly predicts terrain properties in both cases. The proposed framework runs in real-time and includes a ROS interface for easy integration.
Keyword: localization
Structure Aware and Class Balanced 3D Object Detection on nuScenes Dataset
Abstract
3-D object detection is pivotal for autonomous driving. Point cloud based methods have become increasingly popular for 3-D object detection, owing to their accurate depth information. NuTonomy's nuScenes dataset greatly extends commonly used datasets such as KITTI in size, sensor modalities, categories, and annotation numbers. However, it suffers from severe class imbalance. The Class-balanced Grouping and Sampling paper addresses this issue and suggests augmentation and sampling strategy. However, the localization precision of this model is affected by the loss of spatial information in the downscaled feature maps. We propose to enhance the performance of the CBGS model by designing an auxiliary network, that makes full use of the structure information of the 3D point cloud, in order to improve the localization accuracy. The detachable auxiliary network is jointly optimized by two point-level supervisions, namely foreground segmentation and center estimation. The auxiliary network does not introduce any extra computation during inference, since it can be detached at test time.
Deep Dense Local Feature Matching and Vehicle Removal for Indoor Visual Localization
Authors: Kyung Ho Park
Subjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Abstract
Visual localization is an essential component of intelligent transportation systems, enabling broad applications that require understanding one's self location when other sensors are not available. It is mostly tackled by image retrieval such that the location of a query image is determined by its closest match in the previously collected images. Existing approaches focus on large scale localization where landmarks are helpful in finding the location. However, visual localization becomes challenging in small scale environments where objects are hardly recognizable. In this paper, we propose a visual localization framework that robustly finds the match for a query among the images collected from indoor parking lots. It is a challenging problem when the vehicles in the images share similar appearances and are frequently replaced such as parking lots. We propose to employ a deep dense local feature matching that resembles human perception to find correspondences and eliminating matches from vehicles automatically with a vehicle detector. The proposed solution is robust to the scenes with low textures and invariant to false matches caused by vehicles. We compare our framework with alternatives to validate our superiority on a benchmark dataset containing 267 pre-collected images and 99 query images taken from 34 sections of a parking lot. Our method achieves 86.9 percent accuracy, outperforming the alternatives.
Location-free Human Pose Estimation
Authors: Xixia Xu, Yingguo Gao, Ke Yan, Xue Lin, Qi Zou
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Abstract
Human pose estimation (HPE) usually requires large-scale training data to reach high performance. However, it is rather time-consuming to collect high-quality and fine-grained annotations for human body. To alleviate this issue, we revisit HPE and propose a location-free framework without supervision of keypoint locations. We reformulate the regression-based HPE from the perspective of classification. Inspired by the CAM-based weakly-supervised object localization, we observe that the coarse keypoint locations can be acquired through the part-aware CAMs but unsatisfactory due to the gap between the fine-grained HPE and the object-level localization. To this end, we propose a customized transformer framework to mine the fine-grained representation of human context, equipped with the structural relation to capture subtle differences among keypoints. Concretely, we design a Multi-scale Spatial-guided Context Encoder to fully capture the global human context while focusing on the part-aware regions and a Relation-encoded Pose Prototype Generation module to encode the structural relations. All these works together for strengthening the weak supervision from image-level category labels on locations. Our model achieves competitive performance on three datasets when only supervised at a category-level and importantly, it can achieve comparable results with fully-supervised methods with only 25\% location labels on MS-COCO and MPII.
Keyword: transformer
FreDo: Frequency Domain-based Long-Term Time Series Forecasting
Abstract
The ability to forecast far into the future is highly beneficial to many applications, including but not limited to climatology, energy consumption, and logistics. However, due to noise or measurement error, it is questionable how far into the future one can reasonably predict. In this paper, we first mathematically show that due to error accumulation, sophisticated models might not outperform baseline models for long-term forecasting. To demonstrate, we show that a non-parametric baseline model based on periodicity can actually achieve comparable performance to a state-of-the-art Transformer-based model on various datasets. We further propose FreDo, a frequency domain-based neural network model that is built on top of the baseline model to enhance its performance and which greatly outperforms the state-of-the-art model. Finally, we validate that the frequency domain is indeed better by comparing univariate models trained in the frequency v.s. time domain.
Garden-Path Traversal within GPT-2
Authors: William Jurayj, William Rudman, Carsten Eickhoff
Abstract
In recent years, massive language models consisting exclusively of transformer decoders, led by the GPT-x family, have become increasingly popular. While studies have examined the behavior of these models, they tend to only focus on the output of the language model, avoiding analyzing their internal states despite such analyses being popular tools used within BERTology to study transformer encoders. We present a collection of methods for analyzing GPT-2's hidden states, and use the model's navigation of garden path sentences as a case study to demonstrate the utility of studying this model's behavior beyond its output alone. To support this analysis, we introduce a novel dataset consisting of 3 different types of garden path sentences, along with scripts to manipulate them. We find that measuring Manhattan distances and cosine similarities between hidden states shows that GPT-2 navigates these sentences more intuitively than conventional methods that predict from the model's output alone.
FLUTE: Figurative Language Understanding and Textual Explanations
Abstract
In spite of the prevalence of figurative language, transformer-based models struggle to demonstrate an understanding of it. Meanwhile, even classical natural language inference (NLI) tasks have been plagued by spurious correlations and annotation artifacts. Datasets like eSNLI have been released, allowing to probe whether language models are right for the right reasons. Yet no such data exists for figurative language, making it harder to asses genuine understanding of such expressions. In light of the above, we release FLUTE, a dataset of 8,000 figurative NLI instances with explanations, spanning three categories: Sarcasm, Simile, and Metaphor. We collect the data through the Human-AI collaboration framework based on GPT-3, crowdworkers, and expert annotation. We show how utilizing GPT-3 in conjunction with human experts can aid in scaling up the creation of datasets even for such complex linguistic phenomena as figurative language. Baseline performance of the T5 model shows our dataset is a challenging testbed for figurative language understanding.
AdaMix: Mixture-of-Adapter for Parameter-efficient Tuning of Large Language Models
Abstract
Fine-tuning large-scale pre-trained language models to downstream tasks require updating hundreds of millions of parameters. This not only increases the serving cost to store a large copy of the model weights for every task, but also exhibits instability during few-shot task adaptation. Parameter-efficient techniques have been developed that tune small trainable components (e.g., adapters) injected in the large model while keeping most of the model weights frozen. The prevalent mechanism to increase adapter capacity is to increase the bottleneck dimension which increases the adapter parameters. In this work, we introduce a new mechanism to improve adapter capacity without increasing parameters or computational cost by two key techniques. (i) We introduce multiple shared adapter components in each layer of the Transformer architecture. We leverage sparse learning via random routing to update the adapter parameters (encoder is kept frozen) resulting in the same amount of computational cost (FLOPs) as that of training a single adapter. (ii) We propose a simple merging mechanism to average the weights of multiple adapter components to collapse to a single adapter in each Transformer layer, thereby, keeping the overall parameters also the same but with significant performance improvement. We demonstrate these techniques to work well across multiple task settings including fully supervised and few-shot Natural Language Understanding tasks. By only tuning 0.23% of a pre-trained language model's parameters, our model outperforms the full model fine-tuning performance and several competing methods.
Recipe for a General, Powerful, Scalable Graph Transformer
Authors: Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, Dominique Beaini
Abstract
We propose a recipe on how to build a general, powerful, scalable (GPS) graph Transformer with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph Transformers (GTs) have gained popularity in the field of graph representation learning with a variety of recent publications but they lack a common foundation about what constitutes a good positional or structural encoding, and what differentiates them. In this paper, we summarize the different types of encodings with a clearer definition and categorize them as being $\textit{local}$, $\textit{global}$ or $\textit{relative}$. Further, GTs remain constrained to small graphs with few hundred nodes, and we propose the first architecture with a complexity linear to the number of nodes and edges $O(N+E)$ by decoupling the local real-edge aggregation from the fully-connected Transformer. We argue that this decoupling does not negatively affect the expressivity, with our architecture being a universal function approximator for graphs. Our GPS recipe consists of choosing 3 main ingredients: (i) positional/structural encoding, (ii) local message-passing mechanism, and (iii) global attention mechanism. We build and open-source a modular framework $\textit{GraphGPS}$ that supports multiple types of encodings and that provides efficiency and scalability both in small and large graphs. We test our architecture on 11 benchmarks and show very competitive results on all of them, show-casing the empirical benefits gained by the modularity and the combination of different strategies.
Eye-gaze-guided Vision Transformer for Rectifying Shortcut Learning
Authors: Chong Ma, Lin Zhao, Yuzhong Chen, Lu Zhang, Zhenxiang Xiao, Haixing Dai, David Liu, Zihao Wu, Zhengliang Liu, Sheng Wang, Jiaxing Gao, Changhe Li, Xi Jiang, Tuo Zhang, Qian Wang, Dinggang Shen, Dajiang Zhu, Tianming Liu
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Abstract
Learning harmful shortcuts such as spurious correlations and biases prevents deep neural networks from learning the meaningful and useful representations, thus jeopardizing the generalizability and interpretability of the learned representation. The situation becomes even more serious in medical imaging, where the clinical data (e.g., MR images with pathology) are limited and scarce while the reliability, generalizability and transparency of the learned model are highly required. To address this problem, we propose to infuse human experts' intelligence and domain knowledge into the training of deep neural networks. The core idea is that we infuse the visual attention information from expert radiologists to proactively guide the deep model to focus on regions with potential pathology and avoid being trapped in learning harmful shortcuts. To do so, we propose a novel eye-gaze-guided vision transformer (EG-ViT) for diagnosis with limited medical image data. We mask the input image patches that are out of the radiologists' interest and add an additional residual connection in the last encoder layer of EG-ViT to maintain the correlations of all patches. The experiments on two public datasets of INbreast and SIIM-ACR demonstrate our EG-ViT model can effectively learn/transfer experts' domain knowledge and achieve much better performance than baselines. Meanwhile, it successfully rectifies the harmful shortcut learning and significantly improves the EG-ViT model's interpretability. In general, EG-ViT takes the advantages of both human expert's prior knowledge and the power of deep neural networks. This work opens new avenues for advancing current artificial intelligence paradigms by infusing human intelligence.
Breaking the Chain of Gradient Leakage in Vision Transformers
Authors: Yahui Liu, Bin Ren, Yue Song, Wei Bi, Nicu Sebe, Wei Wang
Subjects: Computer Vision and Pattern Recognition (cs.CV); Cryptography and Security (cs.CR)
Abstract
User privacy is of great concern in Federated Learning, while Vision Transformers (ViTs) have been revealed to be vulnerable to gradient-based inversion attacks. We show that the learned low-dimensional spatial prior in position embeddings (PEs) accelerates the training of ViTs. As a side effect, it makes the ViTs tend to be position sensitive and at high risk of privacy leakage. We observe that enhancing the position-insensitive property of a ViT model is a promising way to protect data privacy against these gradient attacks. However, simply removing the PEs may not only harm the convergence and accuracy of ViTs but also places the model at more severe privacy risk. To deal with the aforementioned contradiction, we propose a simple yet efficient Masked Jigsaw Puzzle (MJP) method to break the chain of gradient leakage in ViTs. MJP can be easily plugged into existing ViTs and their derived variants. Extensive experiments demonstrate that our proposed MJP method not only boosts the performance on large-scale datasets (i.e., ImageNet-1K), but can also improve the privacy preservation capacity in the typical gradient attacks by a large margin. Our code is available at: https://github.com/yhlleo/MJP.
RobustLR: Evaluating Robustness to Logical Perturbation in Deductive Reasoning
Authors: Soumya Sanyal, Zeyi Liao, Xiang Ren
Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG); Logic in Computer Science (cs.LO)
Abstract
Transformers have been shown to be able to perform deductive reasoning on a logical rulebase containing rules and statements written in English natural language. While the progress is promising, it is currently unclear if these models indeed perform logical reasoning by understanding the underlying logical semantics in the language. To this end, we propose RobustLR, a suite of evaluation datasets that evaluate the robustness of these models to minimal logical edits in rulebases and some standard logical equivalence conditions. In our experiments with RoBERTa and T5, we find that the models trained in prior works do not perform consistently on the different perturbations in RobustLR, thus showing that the models are not robust to the proposed logical perturbations. Further, we find that the models find it especially hard to learn logical negation and disjunction operators. Overall, using our evaluation sets, we demonstrate some shortcomings of the deductive reasoning-based language models, which can eventually help towards designing better models for logical reasoning over natural language.
VTP: Volumetric Transformer for Multi-view Multi-person 3D Pose Estimation
Abstract
This paper presents Volumetric Transformer Pose estimator (VTP), the first 3D volumetric transformer framework for multi-view multi-person 3D human pose estimation. VTP aggregates features from 2D keypoints in all camera views and directly learns the spatial relationships in the 3D voxel space in an end-to-end fashion. The aggregated 3D features are passed through 3D convolutions before being flattened into sequential embeddings and fed into a transformer. A residual structure is designed to further improve the performance. In addition, the sparse Sinkhorn attention is empowered to reduce the memory cost, which is a major bottleneck for volumetric representations, while also achieving excellent performance. The output of the transformer is again concatenated with 3D convolutional features by a residual design. The proposed VTP framework integrates the high performance of the transformer with volumetric representations, which can be used as a good alternative to the convolutional backbones. Experiments on the Shelf, Campus and CMU Panoptic benchmarks show promising results in terms of both Mean Per Joint Position Error (MPJPE) and Percentage of Correctly estimated Parts (PCP). Our code will be available.
Location-free Human Pose Estimation
Authors: Xixia Xu, Yingguo Gao, Ke Yan, Xue Lin, Qi Zou
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Abstract
Human pose estimation (HPE) usually requires large-scale training data to reach high performance. However, it is rather time-consuming to collect high-quality and fine-grained annotations for human body. To alleviate this issue, we revisit HPE and propose a location-free framework without supervision of keypoint locations. We reformulate the regression-based HPE from the perspective of classification. Inspired by the CAM-based weakly-supervised object localization, we observe that the coarse keypoint locations can be acquired through the part-aware CAMs but unsatisfactory due to the gap between the fine-grained HPE and the object-level localization. To this end, we propose a customized transformer framework to mine the fine-grained representation of human context, equipped with the structural relation to capture subtle differences among keypoints. Concretely, we design a Multi-scale Spatial-guided Context Encoder to fully capture the global human context while focusing on the part-aware regions and a Relation-encoded Pose Prototype Generation module to encode the structural relations. All these works together for strengthening the weak supervision from image-level category labels on locations. Our model achieves competitive performance on three datasets when only supervised at a category-level and importantly, it can achieve comparable results with fully-supervised methods with only 25\% location labels on MS-COCO and MPII.
Abstract
Recently, Transformer networks have achieved impressive results on a variety of vision tasks. However, most of them are computationally expensive and not suitable for real-world mobile applications. In this work, we present Mobile Convolutional Vision Transformer (MoCoViT), which improves in performance and efficiency by introducing transformer into mobile convolutional networks to leverage the benefits of both architectures. Different from recent works on vision transformer, the mobile transformer block in MoCoViT is carefully designed for mobile devices and is very lightweight, accomplished through two primary modifications: the Mobile Self-Attention (MoSA) module and the Mobile Feed Forward Network (MoFFN). MoSA simplifies the calculation of the attention map through Branch Sharing scheme while MoFFN serves as a mobile version of MLP in the transformer, further reducing the computation by a large margin. Comprehensive experiments verify that our proposed MoCoViT family outperform state-of-the-art portable CNNs and transformer neural architectures on various vision tasks. On ImageNet classification, it achieves 74.5% top-1 accuracy at 147M FLOPs, gaining 1.2% over MobileNetV3 with less computations. And on the COCO object detection task, MoCoViT outperforms GhostNet by 2.1 AP in RetinaNet framework.
Eliciting Transferability in Multi-task Learning with Task-level Mixture-of-Experts
Authors: Qinyuan Ye, Juan Zha, Xiang Ren
Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG)
Abstract
Recent work suggests that transformer models are capable of multi-task learning on diverse NLP tasks. However, the potential of these models may be limited as they use the same set of parameters for all tasks. In contrast, humans tackle tasks in a more flexible way, by making proper presumptions on what skills and knowledge are relevant and executing only the necessary computations. Inspired by this, we propose to use task-level mixture-of-expert models, which has a collection of transformer layers (i.e., experts) and a router component to choose among these experts dynamically and flexibly. We show that the learned routing decisions and experts partially rediscover human categorization of NLP tasks -- certain experts are strongly associated with extractive tasks, some with classification tasks, and some with tasks requiring world knowledge.
jTrans: Jump-Aware Transformer for Binary Code Similarity
Abstract
Binary code similarity detection (BCSD) has important applications in various fields such as vulnerability detection, software component analysis, and reverse engineering. Recent studies have shown that deep neural networks (DNNs) can comprehend instructions or control-flow graphs (CFG) of binary code and support BCSD. In this study, we propose a novel Transformer-based approach, namely jTrans, to learn representations of binary code. It is the first solution that embeds control flow information of binary code into Transformer-based language models, by using a novel jump-aware representation of the analyzed binaries and a newly-designed pre-training task. Additionally, we release to the community a newly-created large dataset of binaries, BinaryCorp, which is the most diverse to date. Evaluation results show that jTrans outperforms state-of-the-art (SOTA) approaches on this more challenging dataset by 30.5% (i.e., from 32.0% to 62.5%). In a real-world task of known vulnerability searching, jTrans achieves a recall that is 2X higher than existing SOTA baselines.
Abstract
Arbitrary-oriented object detection (AOOD) is a challenging task to detect objects in the wild with arbitrary orientations and cluttered arrangements. Existing approaches are mainly based on anchor-based boxes or dense points, which rely on complicated hand-designed processing steps and inductive bias, such as anchor generation, transformation, and non-maximum suppression reasoning. Recently, the emerging transformer-based approaches view object detection as a direct set prediction problem that effectively removes the need for hand-designed components and inductive biases. In this paper, we propose an Arbitrary-Oriented Object DEtection TRansformer framework, termed AO2-DETR, which comprises three dedicated components. More precisely, an oriented proposal generation mechanism is proposed to explicitly generate oriented proposals, which provides better positional priors for pooling features to modulate the cross-attention in the transformer decoder. An adaptive oriented proposal refinement module is introduced to extract rotation-invariant region features and eliminate the misalignment between region features and objects. And a rotation-aware set matching loss is used to ensure the one-to-one matching process for direct set prediction without duplicate predictions. Our method considerably simplifies the overall pipeline and presents a new AOOD paradigm. Comprehensive experiments on several challenging datasets show that our method achieves superior performance on the AOOD task.
Understanding Factual Errors in Summarization: Errors, Summarizers, Datasets, Error Detectors
Authors: Liyan Tang, Tanya Goyal, Alexander R. Fabbri, Philippe Laban, Jiacheng Xu, Semih Yahvuz, Wojciech Kryściński, Justin F. Rousseau, Greg Durrett
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)
Abstract
The propensity of abstractive summarization systems to make factual errors has been the subject of significant study, including work on models to detect factual errors and annotation of errors in current systems' outputs. However, the ever-evolving nature of summarization systems, error detectors, and annotated benchmarks make factuality evaluation a moving target; it is hard to get a clear picture of how techniques compare. In this work, we collect labeled factuality errors from across nine datasets of annotated summary outputs and stratify them in a new way, focusing on what kind of base summarization model was used. To support finer-grained analysis, we unify the labeled error types into a single taxonomy and project each of the datasets' errors into this shared labeled space. We then contrast five state-of-the-art error detection methods on this benchmark. Our findings show that benchmarks built on modern summary outputs (those from pre-trained models) show significantly different results than benchmarks using pre-Transformer models. Furthermore, no one factuality technique is superior in all settings or for all error types, suggesting that system developers should take care to choose the right system for their task at hand.
Inception Transformer
Authors: Chenyang Si, Weihao Yu, Pan Zhou, Yichen Zhou, Xinchao Wang, Shuicheng Yan
Abstract
Recent studies show that Transformer has strong capability of building long-range dependencies, yet is incompetent in capturing high frequencies that predominantly convey local information. To tackle this issue, we present a novel and general-purpose Inception Transformer, or iFormer for short, that effectively learns comprehensive features with both high- and low-frequency information in visual data. Specifically, we design an Inception mixer to explicitly graft the advantages of convolution and max-pooling for capturing the high-frequency information to Transformers. Different from recent hybrid frameworks, the Inception mixer brings greater efficiency through a channel splitting mechanism to adopt parallel convolution/max-pooling path and self-attention path as high- and low-frequency mixers, while having the flexibility to model discriminative information scattered within a wide frequency range. Considering that bottom layers play more roles in capturing high-frequency details while top layers more in modeling low-frequency global information, we further introduce a frequency ramp structure, i.e. gradually decreasing the dimensions fed to the high-frequency mixer and increasing those to the low-frequency mixer, which can effectively trade-off high- and low-frequency components across different layers. We benchmark the iFormer on a series of vision tasks, and showcase that it achieves impressive performance on image classification, COCO detection and ADE20K segmentation. For example, our iFormer-S hits the top-1 accuracy of 83.4% on ImageNet-1K, much higher than DeiT-S by 3.6%, and even slightly better than much bigger model Swin-B (83.3%) with only 1/4 parameters and 1/3 FLOPs. Code and models will be released at https://github.com/sail-sg/iFormer.
Keyword: SLAM
Loop Closure Prioritization for Efficient and Scalable Multi-Robot SLAM
FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech
Wildcat: Online Continuous-Time 3D Lidar-Inertial SLAM
Keyword: odometry
Wildcat: Online Continuous-Time 3D Lidar-Inertial SLAM
Keyword: livox
There is no result
Keyword: loam
There is no result
Keyword: lidar
sat2pc: Estimating Point Cloud of Building Roofs from 2D Satellite Images
From Pedestrian Detection to Crosswalk Estimation: An EM Algorithm and Analysis on Diverse Datasets
Wildcat: Online Continuous-Time 3D Lidar-Inertial SLAM
Keyword: loop detection
There is no result
Keyword: autonomous driving
Structure Aware and Class Balanced 3D Object Detection on nuScenes Dataset
Keyword: mapping
PINO-MBD: Physics-informed Neural Operator for Solving Coupled ODEs in Multi-body Dynamics
Constant Curvature Curve Tube Codes for Low-Latency Analog Error Correction
First Contact: Unsupervised Human-Machine Co-Adaptation via Mutual Information Maximization
Conditional set generation using Seq2seq models
NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results
Asking the Right Questions in Low Resource Template Extraction
Large Language Models are Zero-Shot Clinical Information Extractors
These Maps Are Made For Walking: Real-Time Terrain Property Estimation for Mobile Robots
Keyword: localization
Structure Aware and Class Balanced 3D Object Detection on nuScenes Dataset
Deep Dense Local Feature Matching and Vehicle Removal for Indoor Visual Localization
Location-free Human Pose Estimation
Keyword: transformer
FreDo: Frequency Domain-based Long-Term Time Series Forecasting
Garden-Path Traversal within GPT-2
FLUTE: Figurative Language Understanding and Textual Explanations
AdaMix: Mixture-of-Adapter for Parameter-efficient Tuning of Large Language Models
Recipe for a General, Powerful, Scalable Graph Transformer
Eye-gaze-guided Vision Transformer for Rectifying Shortcut Learning
Breaking the Chain of Gradient Leakage in Vision Transformers
RobustLR: Evaluating Robustness to Logical Perturbation in Deductive Reasoning
VTP: Volumetric Transformer for Multi-view Multi-person 3D Pose Estimation
Location-free Human Pose Estimation
MoCoViT: Mobile Convolutional Vision Transformer
Eliciting Transferability in Multi-task Learning with Task-level Mixture-of-Experts
jTrans: Jump-Aware Transformer for Binary Code Similarity
AO2-DETR: Arbitrary-Oriented Object Detection Transformer
Understanding Factual Errors in Summarization: Errors, Summarizers, Datasets, Error Detectors
Inception Transformer
Keyword: nerf
There is no result