Closed ericdqian closed 3 years ago
No, we haven't encountered this issue during the development. This could be an environment configuration problem. You may check if torchsparse
is correctly installed and compilation by the end of the installation is successful.
Thank you for the quick response! I believe my torchsparse
is installed properly since I can run their examples. Could you share what version was used during development?
This is the complete version information of my environment.
name: neucon
channels:
- conda-forge
- pytorch
dependencies:
- _libgcc_mutex=0.1=main
- backcall=0.2.0=pyhd3eb1b0_0
- blas=1.0=mkl
- ca-certificates=2021.4.13=h06a4308_1
- certifi=2020.12.5=py37h06a4308_0
- cudatoolkit=10.2.89=hfd86e86_1
- freetype=2.10.4=h5ab3b9f_0
- intel-openmp=2021.2.0=h06a4308_610
- ipython=7.22.0=py37hb070fc8_0
- ipython_genutils=0.2.0=pyhd3eb1b0_1
- jedi=0.17.0=py37_0
- jpeg=9b=h024ee3a_2
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libffi=3.3=he6710b0_2
- libgcc-ng=9.1.0=hdf63c60_0
- libllvm10=10.0.1=hbcb73fb_5
- libpng=1.6.37=hbc83047_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_1
- llvmlite=0.36.0=py37h612dafd_4
- lz4-c=1.9.3=h2531618_0
- mkl=2021.2.0=h06a4308_296
- mkl-service=2.3.0=py37h27cfd23_1
- mkl_fft=1.3.0=py37h42c9631_2
- mkl_random=1.2.1=py37ha9443f7_2
- ncurses=6.2=he6710b0_1
- ninja=1.10.2=hff7bd54_1
- numba=0.53.1=py37ha9443f7_0
- numpy=1.20.1=py37h93e21f0_0
- numpy-base=1.20.1=py37h7d8b39e_0
- olefile=0.46=py37_0
- openssl=1.1.1k=h27cfd23_0
- parso=0.8.2=pyhd3eb1b0_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=8.2.0=py37he98fc37_0
- pip=21.0.1=py37h06a4308_0
- prompt-toolkit=3.0.17=pyh06a4308_0
- ptyprocess=0.7.0=pyhd3eb1b0_2
- pygments=2.8.1=pyhd3eb1b0_0
- python=3.7.9=h7579374_0
- pytorch=1.6.0=py3.7_cuda10.2.89_cudnn7.6.5_0
- readline=8.1=h27cfd23_0
- setuptools=52.0.0=py37h06a4308_0
- six=1.15.0=py37h06a4308_0
- sparsehash=2.0.3=hf484d3e_1000
- sqlite=3.35.4=hdfb4753_0
- tbb=2020.3=hfd86e86_0
- tk=8.6.10=hbc83047_0
- torchvision=0.7.0=py37_cu102
- traitlets=5.0.5=pyhd3eb1b0_0
- wcwidth=0.2.5=py_0
- wheel=0.36.2=pyhd3eb1b0_0
- xz=5.2.5=h7b6447c_0
- zlib=1.2.11=h7b6447c_3
- zstd=1.4.9=haebb681_0
- pip:
- addict==2.4.0
- aiohttp==3.7.4.post0
- aiohttp-cors==0.7.0
- aioredis==1.3.1
- appdirs==1.4.4
- argon2-cffi==20.1.0
- async-generator==1.10
- async-timeout==3.0.1
- attrs==20.3.0
- bleach==3.3.0
- blessings==1.7
- cached-property==1.5.2
- cachetools==4.2.2
- cffi==1.14.5
- chardet==4.0.0
- colorama==0.4.4
- cycler==0.10.0
- decorator==4.4.2
- defusedxml==0.7.1
- entrypoints==0.3
- filelock==3.0.12
- freetype-py==2.2.0
- gdown==3.13.0
- google-api-core==1.26.3
- google-auth==1.30.0
- googleapis-common-protos==1.53.0
- gpustat==0.6.0
- grpcio==1.37.1
- h5py==3.2.1
- hiredis==2.0.0
- humanize==3.5.0
- idna==2.10
- imageio==2.9.0
- importlib-metadata==4.0.1
- ipykernel==5.5.4
- ipywidgets==7.6.3
- jinja2==2.11.3
- jsonschema==3.2.0
- jupyter-client==6.2.0
- jupyter-core==4.7.1
- jupyterlab-pygments==0.1.2
- jupyterlab-widgets==1.0.0
- kiwisolver==1.3.1
- loguru==0.5.3
- mako==1.1.4
- markupsafe==1.1.1
- matplotlib==3.4.1
- mistune==0.8.4
- msgpack==1.0.2
- multidict==5.1.0
- nbclient==0.5.3
- nbconvert==6.0.7
- nbformat==5.1.3
- nest-asyncio==1.5.1
- networkx==2.5.1
- notebook==6.3.0
- nvidia-ml-py3==7.352.0
- open3d==0.12.0
- opencensus==0.7.12
- opencensus-context==0.1.2
- opencv-python==4.5.1.48
- packaging==20.9
- pandas==1.2.4
- pandocfilters==1.4.3
- plyfile==0.7.4
- prometheus-client==0.10.1
- protobuf==3.15.8
- psutil==5.8.0
- py-spy==0.3.5
- pyasn1==0.4.8
- pyasn1-modules==0.2.8
- pycparser==2.20
- pycuda==2021.1
- pyglet==1.5.16
- pyopengl==3.1.0
- pyparsing==2.4.7
- pyrender==0.1.45
- pyrsistent==0.17.3
- pysocks==1.7.1
- python-dateutil==2.8.1
- pytools==2021.2.6
- pytz==2021.1
- pywavelets==1.1.1
- pyyaml==5.4.1
- pyzmq==22.0.3
- ray==1.3.0
- redis==3.5.3
- requests==2.25.1
- rsa==4.7.2
- scikit-image==0.18.1
- scikit-learn==0.24.2
- scipy==1.6.3
- send2trash==1.5.0
- sklearn==0.0
- tensorboardx==2.2
- terminado==0.9.4
- testpath==0.4.4
- threadpoolctl==2.1.0
- tifffile==2021.4.8
- torchsparse==1.2.0
- tornado==6.1
- tqdm==4.60.0
- transforms3d==0.3.1
- trimesh==3.9.19
- typing-extensions==3.7.4.3
- urllib3==1.26.4
- webencodings==0.5.1
- widgetsnbextension==3.5.1
- yacs==0.1.8
- yarl==1.6.3
- zipp==3.4.1
prefix: /home/sunjiaming/miniconda3/envs/neucon
Thank you for this! I'm still running into issues - I'll further investigate torchsparse
I'm running into an error during the forward pass in both training and the demo. This occurs when
neighbor_map
is one dimensional in thetorchsparse
function. Was this ever encountered during development?Traceback (most recent call last): File "main.py", line 308, in
train()
File "main.py", line 212, in train
loss, scalar_outputs = train_sample(sample)
File "main.py", line 288, in train_sample
outputs, loss_dict = model(sample)
File "/data/vision/billf/intrinsic/neural-render/ericqian/software/miniconda3/envs/necon/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
result = self.forward(*input, kwargs)
File "/data/vision/billf/scratch/ericqian/neural-render/code/NeuralRecon/models/neuralrecon.py", line 82, in forward
outputs, loss_dict = self.neucon_net(features, inputs, outputs)
File "/data/vision/billf/intrinsic/neural-render/ericqian/software/miniconda3/envs/necon/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
result = self.forward(*input, *kwargs)
File "/data/vision/billf/scratch/ericqian/neural-render/code/NeuralRecon/models/neucon_network.py", line 157, in forward
feat = self.sp_convsi
File "/data/vision/billf/intrinsic/neural-render/ericqian/software/miniconda3/envs/necon/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
result = self.forward(input, kwargs)
File "/data/vision/billf/scratch/ericqian/neural-render/code/NeuralRecon/models/modules.py", line 154, in forward
x1 = self.stage1(x1)
File "/data/vision/billf/intrinsic/neural-render/ericqian/software/miniconda3/envs/necon/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
result = self.forward(*input, kwargs)
File "/data/vision/billf/intrinsic/neural-render/ericqian/software/miniconda3/envs/necon/lib/python3.7/site-packages/torch/nn/modules/container.py", line 117, in forward
input = module(input)
File "/data/vision/billf/intrinsic/neural-render/ericqian/software/miniconda3/envs/necon/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
result = self.forward(*input, *kwargs)
File "/data/vision/billf/scratch/ericqian/neural-render/code/NeuralRecon/models/modules.py", line 24, in forward
out = self.net(x)
File "/data/vision/billf/intrinsic/neural-render/ericqian/software/miniconda3/envs/necon/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
result = self.forward(input, kwargs)
File "/data/vision/billf/intrinsic/neural-render/ericqian/software/miniconda3/envs/necon/lib/python3.7/site-packages/torch/nn/modules/container.py", line 117, in forward
input = module(input)
File "/data/vision/billf/intrinsic/neural-render/ericqian/software/miniconda3/envs/necon/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
result = self.forward(*input, **kwargs)
File "/data/vision/billf/intrinsic/neural-render/ericqian/software/miniconda3/envs/necon/lib/python3.7/site-packages/torchsparse/nn/modules/conv.py", line 63, in forward
transpose=self.t)
File "/data/vision/billf/intrinsic/neural-render/ericqian/software/miniconda3/envs/necon/lib/python3.7/site-packages/torchsparse/nn/functional/sparseconv.py", line 151, in conv3d
idx_query = list(convert_neighbor_map_gpu(idx_query))
File "/data/vision/billf/intrinsic/neural-render/ericqian/software/miniconda3/envs/necon/lib/python3.7/site-packages/torchsparse/nn/functional/convert_neighbor_map.py", line 10, in forward
idx_batch, idx_point = torch.where(neighbor_map != -1)
ValueError: not enough values to unpack (expected 2, got 1)
Segmentation fault