zkonduit / ezkl

ezkl is an engine for doing inference for deep learning models and other computational graphs in a zk-snark (ZKML). Use it from Python, Javascript, or the command line.
https://docs.ezkl.xyz/
939 stars 141 forks source link

Dimension mismatch in tensor op #827

Closed pgermani closed 3 months ago

pgermani commented 3 months ago

I've been trying to use EZKL with the apple/mobilevit-xx-small model, but I got an error during the first step of the EZKL library, when calling gen_settings. I exported the model in ONNX format and performed inference, and then I attempted to use EZKL.

Description error:

[tensor] dimension mismatch in tensor op: Given groups=128, expected kernel to be at least 128 at dimension 0 but got 0 instead Traceback (most recent call last): File "mobilevit.py", line 83, in res = ezkl.gen_settings(onnx_path, settings_path, py_run_args=py_run_args) RuntimeError: Failed to generate settings: [graph] [halo2] General synthesis

Here is my code:

from transformers import MobileViTFeatureExtractor, MobileViTForImageClassification
from PIL import Image
import requests
import torch
import inspect
import onnxruntime as ort
import numpy as np
import os
import ezkl

onnx_path = os.path.join("./mobilevit.onnx")

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/mobilevit-xx-small")
model = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small")

inputs = feature_extractor(images=image, return_tensors="pt")

input_names = list(inputs.keys())
print(f"input keys: {input_names}")

outputs = model(**inputs)
logits = outputs.logits

output_names = list(outputs.keys())
print(f"output keys: {output_names}")

predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])

signature = inspect.signature(model.forward)
print(f"forward signature: {signature}")

print(f"input shape: {inputs['pixel_values'].shape}")
print(f"output shape: {outputs.logits.shape}")

torch.onnx.export(
    model, 
    (inputs['pixel_values'],), 
    onnx_path,
    input_names=['pixel_values'], 
    output_names=['logits'],
    dynamic_axes={
        'pixel_values': {0: 'batch_size'},  
        'logits': {0: 'batch_size'}         
    },
    opset_version=13,
)

session = ort.InferenceSession(onnx_path)
input_array = inputs['pixel_values'].numpy()
outputs = session.run(None, {"pixel_values": input_array})

logits = outputs[0]
print(f"Output logits: {logits}")
predicted_class = np.argmax(logits, axis=1)
print(f"Predicted class: {predicted_class[0]}")

## ezkl 
sol_code_path = os.path.join('./proof/Verifier.sol')
abi_path = os.path.join('./proof/Verifier.abi')

compiled_model_path = os.path.join('./proof/network.ezkl')
settings_path = os.path.join('./proof/settings.json')
cal_data_path = os.path.join('./proof/cal_data.json')
witness_path = os.path.join('./proof/witness.json')
proof_path = os.path.join('./proof/proof.json')
data_path = os.path.join('./proof/input.json')
pk_path = os.path.join('./proof/test.pk')
vk_path = os.path.join('./proof/test.vk')

if not os.path.exists("proof"):
    os.makedirs("proof")

py_run_args = ezkl.PyRunArgs() 
py_run_args.output_visibility = "public"
py_run_args.param_visibility = "private"
py_run_args.input_visibility = "hashed"

res = ezkl.gen_settings(onnx_path, settings_path, py_run_args=py_run_args) 
ezkl.calibrate_settings(cal_data_path, onnx_path, settings_path, "resources")
ezkl.compile_circuit(onnx_path, compiled_model_path, settings_path) 
res = ezkl.get_srs( settings_path) 
res = ezkl.setup( 
                compiled_model_path,
                vk_path,
                pk_path,
                )
res = ezkl.create_evm_verifier(
        vk_path,
        settings_path,
        sol_code_path,
        abi_path
    )
alexander-camuto commented 3 months ago

@pgermani taking a look at this now, was able to reproduce. Will patch it soon :)