zylo117 / Yet-Another-EfficientDet-Pytorch

The pytorch re-implement of the official efficientdet with SOTA performance in real time and pretrained weights.
GNU Lesser General Public License v3.0
5.21k stars 1.27k forks source link

efficientdet-d0 AMP #691

Closed GuoQuanhao closed 3 years ago

GuoQuanhao commented 3 years ago
python coco_eval.py -p coco -c 0 -w efficientdet-d0.pth
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.209
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.304
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.225
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.120
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.296
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.332
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.277
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.431
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.488
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.211
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.569
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.694

How to get 0.331?

zylo117 commented 3 years ago

?