zylon-ai / private-gpt

Interact with your documents using the power of GPT, 100% privately, no data leaks
https://privategpt.dev
Apache License 2.0
54.32k stars 7.3k forks source link

RuntimeError: Failed to import transformers.models.auto because of the following error #1430

Closed simwai closed 10 months ago

simwai commented 11 months ago

Hello, I did the complete installation guide for Windows including the CUDA driver installation, but I cannot get it running. Pyenv-win and poetry are running well btw.

The only value I changed in the config was vectorstore -> database. I set it from qdrant to chroma. Help would be nice. Thank you!

Poetry (version 1.7.1)
Python 3.11.7
(venv) PS G:\Downloads\GitHub\privateGPT> python .\scripts\ingest_folder.py "S:\Meine Ablage\CLOUD\Trading\Lernmaterial\AI Training Data"
21:34:00.287 [INFO    ] private_gpt.settings.settings_loader - Starting application with profiles=['default']
21:34:01.807 [INFO    ] private_gpt.components.llm.llm_component - Initializing the LLM in mode=local
ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 2070 SUPER, compute capability 7.5
llama_model_loader: loaded meta data with 24 key-value pairs and 291 tensors from G:\Downloads\GitHub\privateGPT\models\mistral-7b-instruct-v0.2.Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: - tensor    0:                token_embd.weight q4_K     [  4096, 32000,     1,     1 ]
llama_model_loader: - tensor    1:              blk.0.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    2:              blk.0.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor    3:              blk.0.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor    4:         blk.0.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    5:            blk.0.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor    6:              blk.0.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor    7:            blk.0.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor    8:           blk.0.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor    9:            blk.0.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   10:              blk.1.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   11:              blk.1.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   12:              blk.1.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   13:         blk.1.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   14:            blk.1.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   15:              blk.1.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   16:            blk.1.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   17:           blk.1.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   18:            blk.1.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   19:              blk.2.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   20:              blk.2.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   21:              blk.2.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   22:         blk.2.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   23:            blk.2.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   24:              blk.2.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   25:            blk.2.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   26:           blk.2.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   27:            blk.2.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   28:              blk.3.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   29:              blk.3.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   30:              blk.3.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   31:         blk.3.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   32:            blk.3.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   33:              blk.3.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   34:            blk.3.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   35:           blk.3.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   36:            blk.3.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   37:              blk.4.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   38:              blk.4.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   39:              blk.4.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   40:         blk.4.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   41:            blk.4.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   42:              blk.4.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   43:            blk.4.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   44:           blk.4.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   45:            blk.4.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   46:              blk.5.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   47:              blk.5.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   48:              blk.5.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   49:         blk.5.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   50:            blk.5.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   51:              blk.5.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   52:            blk.5.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   53:           blk.5.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   54:            blk.5.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   55:              blk.6.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   56:              blk.6.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   57:              blk.6.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   58:         blk.6.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   59:            blk.6.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   60:              blk.6.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   61:            blk.6.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   62:           blk.6.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   63:            blk.6.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   64:              blk.7.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   65:              blk.7.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   66:              blk.7.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   67:         blk.7.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   68:            blk.7.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   69:              blk.7.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   70:            blk.7.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   71:           blk.7.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   72:            blk.7.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   73:              blk.8.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   74:              blk.8.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   75:              blk.8.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   76:         blk.8.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   77:            blk.8.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   78:              blk.8.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   79:            blk.8.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   80:           blk.8.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   81:            blk.8.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   82:              blk.9.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   83:              blk.9.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   84:              blk.9.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   85:         blk.9.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   86:            blk.9.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   87:              blk.9.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   88:            blk.9.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   89:           blk.9.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   90:            blk.9.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   91:             blk.10.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   92:             blk.10.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   93:             blk.10.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   94:        blk.10.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   95:           blk.10.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   96:             blk.10.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   97:           blk.10.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   98:          blk.10.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   99:           blk.10.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  100:             blk.11.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  101:             blk.11.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  102:             blk.11.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  103:        blk.11.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  104:           blk.11.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  105:             blk.11.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  106:           blk.11.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  107:          blk.11.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  108:           blk.11.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  109:             blk.12.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  110:             blk.12.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  111:             blk.12.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  112:        blk.12.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  113:           blk.12.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  114:             blk.12.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  115:           blk.12.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  116:          blk.12.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  117:           blk.12.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  118:             blk.13.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  119:             blk.13.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  120:             blk.13.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  121:        blk.13.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  122:           blk.13.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  123:             blk.13.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  124:           blk.13.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  125:          blk.13.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  126:           blk.13.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  127:             blk.14.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  128:             blk.14.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  129:             blk.14.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  130:        blk.14.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  131:           blk.14.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  132:             blk.14.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  133:           blk.14.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  134:          blk.14.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  135:           blk.14.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  136:             blk.15.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  137:             blk.15.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  138:             blk.15.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  139:        blk.15.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  140:           blk.15.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  141:             blk.15.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  142:           blk.15.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  143:          blk.15.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  144:           blk.15.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  145:             blk.16.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  146:             blk.16.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  147:             blk.16.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  148:        blk.16.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  149:           blk.16.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  150:             blk.16.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  151:           blk.16.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  152:          blk.16.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  153:           blk.16.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  154:             blk.17.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  155:             blk.17.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  156:             blk.17.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  157:        blk.17.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  158:           blk.17.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  159:             blk.17.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  160:           blk.17.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  161:          blk.17.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  162:           blk.17.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  163:             blk.18.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  164:             blk.18.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  165:             blk.18.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  166:        blk.18.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  167:           blk.18.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  168:             blk.18.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  169:           blk.18.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  170:          blk.18.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  171:           blk.18.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  172:             blk.19.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  173:             blk.19.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  174:             blk.19.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  175:        blk.19.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  176:           blk.19.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  177:             blk.19.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  178:           blk.19.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  179:          blk.19.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  180:           blk.19.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  181:             blk.20.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  182:             blk.20.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  183:             blk.20.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  184:        blk.20.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  185:           blk.20.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  186:             blk.20.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  187:           blk.20.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  188:          blk.20.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  189:           blk.20.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  190:             blk.21.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  191:             blk.21.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  192:             blk.21.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  193:        blk.21.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  194:           blk.21.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  195:             blk.21.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  196:           blk.21.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  197:          blk.21.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  198:           blk.21.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  199:             blk.22.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  200:             blk.22.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  201:             blk.22.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  202:        blk.22.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  203:           blk.22.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  204:             blk.22.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  205:           blk.22.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  206:          blk.22.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  207:           blk.22.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  208:             blk.23.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  209:             blk.23.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  210:             blk.23.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  211:        blk.23.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  212:           blk.23.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  213:             blk.23.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  214:           blk.23.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  215:          blk.23.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  216:           blk.23.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  217:             blk.24.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  218:             blk.24.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  219:             blk.24.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  220:        blk.24.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  221:           blk.24.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  222:             blk.24.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  223:           blk.24.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  224:          blk.24.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  225:           blk.24.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  226:             blk.25.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  227:             blk.25.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  228:             blk.25.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  229:        blk.25.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  230:           blk.25.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  231:             blk.25.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  232:           blk.25.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  233:          blk.25.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  234:           blk.25.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  235:             blk.26.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  236:             blk.26.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  237:             blk.26.attn_v.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  238:        blk.26.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  239:           blk.26.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  240:             blk.26.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  241:           blk.26.ffn_down.weight q4_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  242:          blk.26.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  243:           blk.26.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  244:             blk.27.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  245:             blk.27.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  246:             blk.27.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  247:        blk.27.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  248:           blk.27.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  249:             blk.27.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  250:           blk.27.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  251:          blk.27.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  252:           blk.27.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  253:             blk.28.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  254:             blk.28.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  255:             blk.28.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  256:        blk.28.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  257:           blk.28.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  258:             blk.28.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  259:           blk.28.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  260:          blk.28.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  261:           blk.28.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  262:             blk.29.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  263:             blk.29.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  264:             blk.29.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  265:        blk.29.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  266:           blk.29.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  267:             blk.29.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  268:           blk.29.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  269:          blk.29.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  270:           blk.29.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  271:             blk.30.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  272:             blk.30.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  273:             blk.30.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  274:        blk.30.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  275:           blk.30.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  276:             blk.30.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  277:           blk.30.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  278:          blk.30.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  279:           blk.30.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  280:             blk.31.attn_q.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  281:             blk.31.attn_k.weight q4_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  282:             blk.31.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  283:        blk.31.attn_output.weight q4_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  284:           blk.31.ffn_gate.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  285:             blk.31.ffn_up.weight q4_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  286:           blk.31.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  287:          blk.31.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  288:           blk.31.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  289:               output_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  290:                    output.weight q6_K     [  4096, 32000,     1,     1 ]
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = mistralai_mistral-7b-instruct-v0.2
llama_model_loader: - kv   2:                       llama.context_length u32              = 32768
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                       llama.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  11:                          general.file_type u32              = 15
llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  19:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  20:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  21:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  22:                    tokenizer.chat_template str              = {{ bos_token }}{% for message in mess...
llama_model_loader: - kv  23:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q4_K:  193 tensors
llama_model_loader: - type q6_K:   33 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 32768
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 32768
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 7.24 B
llm_load_print_meta: model size       = 4.07 GiB (4.83 BPW)
llm_load_print_meta: general.name     = mistralai_mistral-7b-instruct-v0.2
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.11 MiB
llm_load_tensors: using CUDA for GPU acceleration
llm_load_tensors: mem required  =   70.42 MiB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors: VRAM used: 4095.05 MiB
...............................................................................................
llama_new_context_with_model: n_ctx      = 3900
llama_new_context_with_model: freq_base  = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: KV self size  =  487.50 MiB, K (f16):  243.75 MiB, V (f16):  243.75 MiB
llama_build_graph: non-view tensors processed: 676/676
llama_new_context_with_model: compute buffer total size = 278.56 MiB
llama_new_context_with_model: VRAM scratch buffer: 275.37 MiB
llama_new_context_with_model: total VRAM used: 4370.43 MiB (model: 4095.05 MiB, context: 275.37 MiB)
AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 |
21:34:04.871 [INFO    ] private_gpt.components.embedding.embedding_component - Initializing the embedding model in mode=local
Traceback (most recent call last):
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 798, in get
    return self._context[key]
           ~~~~~~~~~~~~~^^^^^
KeyError: <class 'private_gpt.server.ingest.ingest_service.IngestService'>

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 798, in get
    return self._context[key]
           ~~~~~~~~~~~~~^^^^^
KeyError: <class 'private_gpt.components.embedding.embedding_component.EmbeddingComponent'>

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\transformers\utils\import_utils.py", line 1382, in _get_module
    return importlib.import_module("." + module_name, self.__name__)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\Simon\.pyenv\pyenv-win\versions\3.11.7\Lib\importlib\__init__.py", line 126, in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "<frozen importlib._bootstrap>", line 1204, in _gcd_import
  File "<frozen importlib._bootstrap>", line 1176, in _find_and_load
  File "<frozen importlib._bootstrap>", line 1126, in _find_and_load_unlocked
  File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed
  File "<frozen importlib._bootstrap>", line 1204, in _gcd_import
  File "<frozen importlib._bootstrap>", line 1176, in _find_and_load
  File "<frozen importlib._bootstrap>", line 1147, in _find_and_load_unlocked
  File "<frozen importlib._bootstrap>", line 690, in _load_unlocked
  File "<frozen importlib._bootstrap_external>", line 940, in exec_module
  File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\transformers\models\__init__.py", line 15, in <module>
    from . import (
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\transformers\models\mt5\__init__.py", line 29, in <module>
    from ..t5.tokenization_t5 import T5Tokenizer
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\transformers\models\t5\tokenization_t5.py", line 24, in <module>
    import sentencepiece as spm
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\sentencepiece\__init__.py", line 13, in <module>
    from . import _sentencepiece
ImportError: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\sentencepiece\__init__.py)

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "G:\Downloads\GitHub\privateGPT\scripts\ingest_folder.py", line 92, in <module>
    ingest_service = global_injector.get(IngestService)
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 91, in wrapper
    return function(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 974, in get
    provider_instance = scope_instance.get(interface, binding.provider)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 91, in wrapper
    return function(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 800, in get
    instance = self._get_instance(key, provider, self.injector)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 811, in _get_instance
    return provider.get(injector)
           ^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 264, in get
    return injector.create_object(self._cls)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 998, in create_object
    self.call_with_injection(init, self_=instance, kwargs=additional_kwargs)
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 1031, in call_with_injection
    dependencies = self.args_to_inject(
                   ^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 91, in wrapper
    return function(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 1079, in args_to_inject
                    ^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 91, in wrapper
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 974, in get
    provider_instance = scope_instance.get(interface, binding.provider)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 91, in wrapper
    return function(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 800, in get
    instance = self._get_instance(key, provider, self.injector)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 811, in _get_instance
    return provider.get(injector)
           ^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 264, in get
    return injector.create_object(self._cls)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 998, in create_object
    self.call_with_injection(init, self_=instance, kwargs=additional_kwargs)
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\injector\__init__.py", line 1040, in call_with_injection
    return callable(*full_args, **dependencies)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\private_gpt\components\embedding\embedding_component.py", line 25, in __init__
    self.embedding_model = HuggingFaceEmbedding(
                           ^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\llama_index\embeddings\huggingface.py", line 65, in __init__
    from transformers import AutoModel, AutoTokenizer
  File "<frozen importlib._bootstrap>", line 1229, in _handle_fromlist
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\transformers\utils\import_utils.py", line 1372, in __getattr__
    module = self._get_module(self._class_to_module[name])
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\transformers\utils\import_utils.py", line 1384, in _get_module
    raise RuntimeError(
RuntimeError: Failed to import transformers.models.auto because of the following error (look up to see its traceback):
cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (G:\Downloads\GitHub\privateGPT\venv\Lib\site-packages\sentencepiece\__init__.py)
(venv) PS G:\Downloads\GitHub\privateGPT> poetry install sentence_transformers

(venv) PS G:\Downloads\GitHub\privateGPT> pip install sentence_transformers
Requirement already satisfied: sentence_transformers in g:\downloads\github\privategpt\venv\lib\site-packages (2.2.2)
Requirement already satisfied: numpy in g:\downloads\github\privategpt\venv\lib\site-packages (from sentence_transformers) (1.26.0)
Requirement already satisfied: tqdm in g:\downloads\github\privategpt\venv\lib\site-packages (from sentence_transformers) (4.66.1)
Requirement already satisfied: nltk in g:\downloads\github\privategpt\venv\lib\site-packages (from sentence_transformers) (3.8.1)
Requirement already satisfied: scipy in g:\downloads\github\privategpt\venv\lib\site-packages (from sentence_transformers) (1.11.4)
Requirement already satisfied: transformers<5.0.0,>=4.6.0 in g:\downloads\github\privategpt\venv\lib\site-packages (from sentence_transformers) (4.36.1)
Requirement already satisfied: torch>=1.6.0 in g:\downloads\github\privategpt\venv\lib\site-packages (from sentence_transformers) (2.1.2)
Requirement already satisfied: huggingface-hub>=0.4.0 in g:\downloads\github\privategpt\venv\lib\site-packages (from sentence_transformers) (0.19.4)
Requirement already satisfied: sentencepiece in g:\downloads\github\privategpt\venv\lib\site-packages (from sentence_transformers) (0.1.99)
Requirement already satisfied: torchvision in g:\downloads\github\privategpt\venv\lib\site-packages (from sentence_transformers) (0.16.2)
Requirement already satisfied: requests in g:\downloads\github\privategpt\venv\lib\site-packages (from huggingface-hub>=0.4.0->sentence_transformers) (2.31.0)
Requirement already satisfied: packaging>=20.9 in g:\downloads\github\privategpt\venv\lib\site-packages (from huggingface-hub>=0.4.0->sentence_transformers) (23.2)
Requirement already satisfied: typing-extensions>=3.7.4.3 in g:\downloads\github\privategpt\venv\lib\site-packages (from huggingface-hub>=0.4.0->sentence_transformers) (4.9.0)
Requirement already satisfied: pyyaml>=5.1 in g:\downloads\github\privategpt\venv\lib\site-packages (from huggingface-hub>=0.4.0->sentence_transformers) (6.0.1)
Requirement already satisfied: filelock in g:\downloads\github\privategpt\venv\lib\site-packages (from huggingface-hub>=0.4.0->sentence_transformers) (3.13.1)
Requirement already satisfied: sympy in g:\downloads\github\privategpt\venv\lib\site-packages (from torch>=1.6.0->sentence_transformers) (1.12)
Requirement already satisfied: networkx in g:\downloads\github\privategpt\venv\lib\site-packages (from torch>=1.6.0->sentence_transformers) (3.2.1)
Requirement already satisfied: jinja2 in g:\downloads\github\privategpt\venv\lib\site-packages (from torch>=1.6.0->sentence_transformers) (3.1.2)
Requirement already satisfied: colorama in g:\downloads\github\privategpt\venv\lib\site-packages (from tqdm->sentence_transformers) (0.4.6)
Requirement already satisfied: regex!=2019.12.17 in g:\downloads\github\privategpt\venv\lib\site-packages (from transformers<5.0.0,>=4.6.0->sentence_transformers) (2023.10.3)
Requirement already satisfied: tokenizers<0.19,>=0.14 in g:\downloads\github\privategpt\venv\lib\site-packages (from transformers<5.0.0,>=4.6.0->sentence_transformers) (0.15.0)
Requirement already satisfied: safetensors>=0.3.1 in g:\downloads\github\privategpt\venv\lib\site-packages (from transformers<5.0.0,>=4.6.0->sentence_transformers) (0.4.1)
Requirement already satisfied: click in g:\downloads\github\privategpt\venv\lib\site-packages (from nltk->sentence_transformers) (8.1.7)
Requirement already satisfied: joblib in g:\downloads\github\privategpt\venv\lib\site-packages (from nltk->sentence_transformers) (1.3.2)
Requirement already satisfied: threadpoolctl>=2.0.0 in g:\downloads\github\privategpt\venv\lib\site-packages (from scikit-learn->sentence_transformers) (3.2.0)
Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in g:\downloads\github\privategpt\venv\lib\site-packages (from torchvision->sentence_transformers) (10.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in g:\downloads\github\privategpt\venv\lib\site-packages (from jinja2->torch>=1.6.0->sentence_transformers) (2.1.3)
Requirement already satisfied: certifi>=2017.4.17 in g:\downloads\github\privategpt\venv\lib\site-packages (from requests->huggingface-hub>=0.4.0->sentence_transformers) (2023.11.17)
Requirement already satisfied: charset-normalizer<4,>=2 in g:\downloads\github\privategpt\venv\lib\site-packages (from requests->huggingface-hub>=0.4.0->sentence_transformers) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in g:\downloads\github\privategpt\venv\lib\site-packages (from requests->huggingface-hub>=0.4.0->sentence_transformers) (3.6)
Requirement already satisfied: urllib3<3,>=1.21.1 in g:\downloads\github\privategpt\venv\lib\site-packages (from requests->huggingface-hub>=0.4.0->sentence_transformers) (1.26.18)
Requirement already satisfied: mpmath>=0.19 in g:\downloads\github\privategpt\venv\lib\site-packages (from sympy->torch>=1.6.0->sentence_transformers) (1.3.0)
WARNING: You are using pip version 22.0.4; however, version 23.3.2 is available.
You should consider upgrading via the 'G:\Downloads\GitHub\privateGPT\venv\Scripts\python.exe -m pip install --upgrade pip' command.
github-actions[bot] commented 11 months ago

Stale issue