zzh-tech / ESTRNN

[ECCV2020 Spotlight] Efficient Spatio-Temporal Recurrent Neural Network for Video Deblurring
MIT License
314 stars 39 forks source link

When i want to train in my own dataset to deblur, the value of loss run into nan #43

Closed RetoFan233 closed 11 months ago

RetoFan233 commented 1 year ago

Hello, @zzh-tech I want to know the reason why the loss value go into nan and the result of model has no significant effect. Please guide me.

The training log is described below:

2023/04/12, 15:35:29 - recording parameters ...
description: develop
seed: 39
threads: 8
num_gpus: 2
no_profile: False
profile_H: 1080
profile_W: 1920
resume: True
resume_file: /data/UDCVideo/baseline/ESTRNN/experiment/2023_04_05_22_31_29_ESTRNN_VideoUDC/model_best.pth.tar
data_root: /home/zhong/Dataset/
dataset: VideoUDC
save_dir: ./experiment/
frames: 8
ds_config: 2ms16ms
data_format: RGB
patch_size: [256, 256]
model: ESTRNN
n_features: 16
n_blocks: 15
future_frames: 2
past_frames: 2
activation: gelu
loss: 1*L1_Charbonnier_loss_color
metrics: PSNR
optimizer: Adam
lr: 0.0005
lr_scheduler: cosine
batch_size: 8
milestones: [200, 400]
decay_gamma: 0.5
start_epoch: 1
end_epoch: 500
trainer_mode: dp
test_only: False
test_frames: 20
test_save_dir: ./results/
test_checkpoint: /data/UDCVideo/baseline/ESTRNN/experiment/2023_04_05_22_31_29_ESTRNN_VideoUDC/model_best.pth.tar
video: False
normalize: True
centralize: True
time: 2023-04-12 15:35:29.064241

2023/04/12, 15:35:29 - building ESTRNN model ...
2023/04/12, 15:35:32 - model structure:
Model(
  (model): Model(
    (cell): RDBCell(
      (F_B0): Conv2d(3, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      (F_B1): RDB_DS(
        (rdb): RDB(
          (dense_layers): Sequential(
            (0): dense_layer(
              (conv): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (act): GELU(approximate=none)
            )
            (1): dense_layer(
              (conv): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (act): GELU(approximate=none)
            )
            (2): dense_layer(
              (conv): Conv2d(48, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (act): GELU(approximate=none)
            )
          )
          (conv1x1): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
        )
        (down_sampling): Conv2d(16, 32, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2))
      )
      (F_B2): RDB_DS(
        (rdb): RDB(
          (dense_layers): Sequential(
            (0): dense_layer(
              (conv): Conv2d(32, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (act): GELU(approximate=none)
            )
            (1): dense_layer(
              (conv): Conv2d(56, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (act): GELU(approximate=none)
            )
            (2): dense_layer(
              (conv): Conv2d(80, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (act): GELU(approximate=none)
            )
          )
          (conv1x1): Conv2d(104, 32, kernel_size=(1, 1), stride=(1, 1))
        )
        (down_sampling): Conv2d(32, 64, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2))
      )
      (F_R): RDNet(
        (RDBs): ModuleList(
          (0): RDB(
            (dense_layers): Sequential(
              (0): dense_layer(
                (conv): Conv2d(80, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (1): dense_layer(
                (conv): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (2): dense_layer(
                (conv): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
            )
            (conv1x1): Conv2d(176, 80, kernel_size=(1, 1), stride=(1, 1))
          )
          (1): RDB(
            (dense_layers): Sequential(
              (0): dense_layer(
                (conv): Conv2d(80, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (1): dense_layer(
                (conv): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (2): dense_layer(
                (conv): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
            )
            (conv1x1): Conv2d(176, 80, kernel_size=(1, 1), stride=(1, 1))
          )
          (2): RDB(
            (dense_layers): Sequential(
              (0): dense_layer(
                (conv): Conv2d(80, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (1): dense_layer(
                (conv): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (2): dense_layer(
                (conv): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
            )
            (conv1x1): Conv2d(176, 80, kernel_size=(1, 1), stride=(1, 1))
          )
          (3): RDB(
            (dense_layers): Sequential(
              (0): dense_layer(
                (conv): Conv2d(80, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (1): dense_layer(
                (conv): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (2): dense_layer(
                (conv): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
            )
            (conv1x1): Conv2d(176, 80, kernel_size=(1, 1), stride=(1, 1))
          )
          (4): RDB(
            (dense_layers): Sequential(
              (0): dense_layer(
                (conv): Conv2d(80, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (1): dense_layer(
                (conv): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (2): dense_layer(
                (conv): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
            )
            (conv1x1): Conv2d(176, 80, kernel_size=(1, 1), stride=(1, 1))
          )
          (5): RDB(
            (dense_layers): Sequential(
              (0): dense_layer(
                (conv): Conv2d(80, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (1): dense_layer(
                (conv): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (2): dense_layer(
                (conv): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
            )
            (conv1x1): Conv2d(176, 80, kernel_size=(1, 1), stride=(1, 1))
          )
          (6): RDB(
            (dense_layers): Sequential(
              (0): dense_layer(
                (conv): Conv2d(80, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (1): dense_layer(
                (conv): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (2): dense_layer(
                (conv): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
            )
            (conv1x1): Conv2d(176, 80, kernel_size=(1, 1), stride=(1, 1))
          )
          (7): RDB(
            (dense_layers): Sequential(
              (0): dense_layer(
                (conv): Conv2d(80, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (1): dense_layer(
                (conv): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (2): dense_layer(
                (conv): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
            )
            (conv1x1): Conv2d(176, 80, kernel_size=(1, 1), stride=(1, 1))
          )
          (8): RDB(
            (dense_layers): Sequential(
              (0): dense_layer(
                (conv): Conv2d(80, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (1): dense_layer(
                (conv): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (2): dense_layer(
                (conv): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
            )
            (conv1x1): Conv2d(176, 80, kernel_size=(1, 1), stride=(1, 1))
          )
          (9): RDB(
            (dense_layers): Sequential(
              (0): dense_layer(
                (conv): Conv2d(80, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (1): dense_layer(
                (conv): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (2): dense_layer(
                (conv): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
            )
            (conv1x1): Conv2d(176, 80, kernel_size=(1, 1), stride=(1, 1))
          )
          (10): RDB(
            (dense_layers): Sequential(
              (0): dense_layer(
                (conv): Conv2d(80, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (1): dense_layer(
                (conv): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (2): dense_layer(
                (conv): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
            )
            (conv1x1): Conv2d(176, 80, kernel_size=(1, 1), stride=(1, 1))
          )
          (11): RDB(
            (dense_layers): Sequential(
              (0): dense_layer(
                (conv): Conv2d(80, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (1): dense_layer(
                (conv): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (2): dense_layer(
                (conv): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
            )
            (conv1x1): Conv2d(176, 80, kernel_size=(1, 1), stride=(1, 1))
          )
          (12): RDB(
            (dense_layers): Sequential(
              (0): dense_layer(
                (conv): Conv2d(80, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (1): dense_layer(
                (conv): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (2): dense_layer(
                (conv): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
            )
            (conv1x1): Conv2d(176, 80, kernel_size=(1, 1), stride=(1, 1))
          )
          (13): RDB(
            (dense_layers): Sequential(
              (0): dense_layer(
                (conv): Conv2d(80, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (1): dense_layer(
                (conv): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (2): dense_layer(
                (conv): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
            )
            (conv1x1): Conv2d(176, 80, kernel_size=(1, 1), stride=(1, 1))
          )
          (14): RDB(
            (dense_layers): Sequential(
              (0): dense_layer(
                (conv): Conv2d(80, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (1): dense_layer(
                (conv): Conv2d(112, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
              (2): dense_layer(
                (conv): Conv2d(144, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (act): GELU(approximate=none)
              )
            )
            (conv1x1): Conv2d(176, 80, kernel_size=(1, 1), stride=(1, 1))
          )
        )
        (conv1x1): Conv2d(1200, 80, kernel_size=(1, 1), stride=(1, 1))
        (conv3x3): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      )
      (F_h): Sequential(
        (0): Conv2d(80, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): RDB(
          (dense_layers): Sequential(
            (0): dense_layer(
              (conv): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (act): GELU(approximate=none)
            )
            (1): dense_layer(
              (conv): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (act): GELU(approximate=none)
            )
            (2): dense_layer(
              (conv): Conv2d(48, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (act): GELU(approximate=none)
            )
          )
          (conv1x1): Conv2d(64, 16, kernel_size=(1, 1), stride=(1, 1))
        )
        (2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      )
    )
    (recons): Reconstructor(
      (model): Sequential(
        (0): ConvTranspose2d(400, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
        (1): ConvTranspose2d(32, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
        (2): Conv2d(16, 3, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
      )
    )
    (fusion): GSA(
      (F_f): Sequential(
        (0): Linear(in_features=160, out_features=320, bias=True)
        (1): GELU(approximate=none)
        (2): Linear(in_features=320, out_features=160, bias=True)
        (3): Sigmoid()
      )
      (F_p): Sequential(
        (0): Conv2d(160, 320, kernel_size=(1, 1), stride=(1, 1))
        (1): Conv2d(320, 160, kernel_size=(1, 1), stride=(1, 1))
      )
      (condense): Conv2d(160, 80, kernel_size=(1, 1), stride=(1, 1))
      (fusion): Conv2d(400, 400, kernel_size=(1, 1), stride=(1, 1))
    )
  )
)

2023/04/12, 15:35:36 - generating profile of ESTRNN model ...
[profile] computation cost: 458.42 GMACs, parameters: 2.47 M

2023/04/12, 15:35:36 - loading VideoUDC dataloader ...
2023/04/12, 15:35:57 - loading checkpoint /data/UDCVideo/baseline/ESTRNN/experiment/2023_04_05_22_31_29_ESTRNN_VideoUDC/model_best.pth.tar ...

2023/04/12, 15:35:57 - [Epoch 2 / lr 5.00e-04]
[train] epoch time: 30389.37s, average batch time: 9.02s
[train] 1*L1_Charbonnier_loss_color : 0.0497 (best 0.0497), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 0.049653;

2023/04/13, 00:02:27 - [Epoch 3 / lr 5.00e-04]
[train] epoch time: 31388.36s, average batch time: 9.31s
[train] 1*L1_Charbonnier_loss_color : 4138261907.0748 (best 0.0497), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 4138261907.074845;

2023/04/13, 08:45:35 - [Epoch 4 / lr 5.00e-04]
[train] epoch time: 31176.41s, average batch time: 9.25s
[train] 1*L1_Charbonnier_loss_color : 0.0515 (best 0.0497), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 0.051471;

2023/04/13, 17:25:12 - [Epoch 5 / lr 5.00e-04]
[train] epoch time: 30173.87s, average batch time: 8.95s
[train] 1*L1_Charbonnier_loss_color : 0.0486 (best 0.0486), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 0.048556;

2023/04/14, 01:48:06 - [Epoch 6 / lr 5.00e-04]
[train] epoch time: 30326.00s, average batch time: 9.00s
[train] 1*L1_Charbonnier_loss_color : 0.0457 (best 0.0457), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 0.045680;

2023/04/14, 10:13:33 - [Epoch 7 / lr 5.00e-04]
[train] epoch time: 30364.56s, average batch time: 9.01s
[train] 1*L1_Charbonnier_loss_color : 1016826.8275 (best 0.0457), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 1016826.827540;

2023/04/14, 18:39:38 - [Epoch 8 / lr 5.00e-04]
[train] epoch time: 30601.50s, average batch time: 9.08s
[train] 1*L1_Charbonnier_loss_color : 0.0460 (best 0.0457), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 0.045977;

2023/04/15, 03:09:40 - [Epoch 9 / lr 5.00e-04]
[train] epoch time: 30508.70s, average batch time: 9.05s
[train] 1*L1_Charbonnier_loss_color : 0.0443 (best 0.0443), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 0.044296;

2023/04/15, 11:38:09 - [Epoch 10 / lr 5.00e-04]
[train] epoch time: 30297.35s, average batch time: 8.99s
[train] 1*L1_Charbonnier_loss_color : inf (best 0.0443), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color :  inf;

2023/04/15, 20:03:06 - [Epoch 11 / lr 5.00e-04]
[train] epoch time: 30177.56s, average batch time: 8.95s
[train] 1*L1_Charbonnier_loss_color : 0.0448 (best 0.0443), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 0.044764;

2023/04/16, 04:26:04 - [Epoch 12 / lr 4.99e-04]
[train] epoch time: 30493.02s, average batch time: 9.05s
[train] 1*L1_Charbonnier_loss_color : 0.0441 (best 0.0441), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 0.044116;

2023/04/16, 12:54:18 - [Epoch 13 / lr 4.99e-04]
[train] epoch time: 30154.28s, average batch time: 8.95s
[train] 1*L1_Charbonnier_loss_color : 2385378883146.6274 (best 0.0441), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 2385378883146.627441;

2023/04/16, 21:16:52 - [Epoch 14 / lr 4.99e-04]
[train] epoch time: 30205.32s, average batch time: 8.96s
[train] 1*L1_Charbonnier_loss_color : 0.0451 (best 0.0441), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 0.045062;

2023/04/17, 05:40:18 - [Epoch 15 / lr 4.99e-04]
[train] epoch time: 30142.28s, average batch time: 8.94s
[train] 1*L1_Charbonnier_loss_color : 0.0431 (best 0.0431), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 0.043079;

2023/04/17, 14:02:41 - [Epoch 16 / lr 4.99e-04]
[train] epoch time: 30201.14s, average batch time: 8.96s
[train] 1*L1_Charbonnier_loss_color : 6983098584846.5400 (best 0.0431), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 6983098584846.540039;

2023/04/17, 22:26:02 - [Epoch 17 / lr 4.99e-04]
[train] epoch time: 30098.64s, average batch time: 8.93s
[train] 1*L1_Charbonnier_loss_color : 0.0440 (best 0.0431), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 0.043975;

2023/04/18, 06:47:41 - [Epoch 18 / lr 4.99e-04]
[train] epoch time: 30196.35s, average batch time: 8.96s
[train] 1*L1_Charbonnier_loss_color : 2596996.1693 (best 0.0431), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 2596996.169278;

2023/04/18, 15:10:58 - [Epoch 19 / lr 4.98e-04]
[train] epoch time: 30428.21s, average batch time: 9.03s
[train] 1*L1_Charbonnier_loss_color : 0.0442 (best 0.0431), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 0.044210;

2023/04/18, 23:38:07 - [Epoch 20 / lr 4.98e-04]
[train] epoch time: 30350.31s, average batch time: 9.01s
[train] 1*L1_Charbonnier_loss_color : 111287.4230 (best 0.0431), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 111287.422983;

2023/04/19, 08:03:57 - [Epoch 21 / lr 4.98e-04]
[train] epoch time: 30116.00s, average batch time: 8.94s
[train] 1*L1_Charbonnier_loss_color : 0.0439 (best 0.0431), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 0.043916;

2023/04/19, 16:25:54 - [Epoch 22 / lr 4.98e-04]
[train] epoch time: 30330.90s, average batch time: 9.00s
[train] 1*L1_Charbonnier_loss_color : 0.0426 (best 0.0426), PSNR : inf (best inf)
[train] L1_Charbonnier_loss_color : 0.042591;

2023/04/20, 00:51:25 - [Epoch 23 / lr 4.98e-04]
[train] epoch time: 30530.48s, average batch time: 9.06s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/20, 09:20:16 - [Epoch 24 / lr 4.97e-04]
[train] epoch time: 30399.65s, average batch time: 9.02s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/20, 17:46:56 - [Epoch 25 / lr 4.97e-04]
[train] epoch time: 30338.83s, average batch time: 9.00s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/21, 02:12:35 - [Epoch 26 / lr 4.97e-04]
[train] epoch time: 29817.28s, average batch time: 8.85s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/21, 10:29:33 - [Epoch 27 / lr 4.97e-04]
[train] epoch time: 30047.09s, average batch time: 8.92s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/21, 18:50:20 - [Epoch 28 / lr 4.96e-04]
[train] epoch time: 30250.96s, average batch time: 8.98s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/22, 03:14:32 - [Epoch 29 / lr 4.96e-04]
[train] epoch time: 29903.88s, average batch time: 8.87s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/22, 11:32:56 - [Epoch 30 / lr 4.96e-04]
[train] epoch time: 30027.95s, average batch time: 8.91s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/22, 19:53:24 - [Epoch 31 / lr 4.96e-04]
[train] epoch time: 31119.49s, average batch time: 9.23s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/23, 04:32:04 - [Epoch 32 / lr 4.95e-04]
[train] epoch time: 31796.63s, average batch time: 9.44s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/23, 13:22:01 - [Epoch 33 / lr 4.95e-04]
[train] epoch time: 31785.75s, average batch time: 9.43s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/23, 22:11:47 - [Epoch 34 / lr 4.95e-04]
[train] epoch time: 31376.58s, average batch time: 9.31s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/24, 06:54:44 - [Epoch 35 / lr 4.94e-04]
[train] epoch time: 30429.09s, average batch time: 9.03s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/24, 15:21:53 - [Epoch 36 / lr 4.94e-04]
[train] epoch time: 30782.03s, average batch time: 9.13s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/24, 23:54:56 - [Epoch 37 / lr 4.94e-04]
[train] epoch time: 30213.03s, average batch time: 8.97s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/25, 08:18:30 - [Epoch 38 / lr 4.93e-04]
[train] epoch time: 30763.64s, average batch time: 9.13s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/25, 16:51:14 - [Epoch 39 / lr 4.93e-04]
[train] epoch time: 30456.50s, average batch time: 9.04s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;

2023/04/26, 01:18:51 - [Epoch 40 / lr 4.93e-04]
[train] epoch time: 30266.62s, average batch time: 8.98s
[train] 1*L1_Charbonnier_loss_color : nan (best 0.0426), PSNR : nan (best inf)
[train] L1_Charbonnier_loss_color :  nan;
zzh-tech commented 1 year ago

Please try to lower the learning rate.