Closed illuminoplanet closed 4 years ago
Implementation
def extract_physics(x):
coor = np.argwhere(x==2)-(np.array(x.shape)//2)
norm_distance = np.linalg.norm(x.shape, ord=2)
physics = {}
center_of_mass = np.linalg.norm(np.mean(coor, axis=0), ord=2)
physics['center_of_mass'] = center_of_mass/norm_distance
moment_of_inertia = np.sum(coor**2, axis=None)
physics['moment_of_inertia'] = moment_of_inertia/(np.sum(x==2)*(norm_distance**2))
return pd.Series(physics)
Visualization
Evaluation
Control: Density-based + Radon-based + Geometry-based Estimator 1 (LR) : Accuracy : 62.51% AUC : 0.9142 Estimator 2 (RF) : Accuracy : 80.08% AUC : 0.9752 Estimator 3 (GBM) : Accuracy : 79.53% AUC : 0.9708 Estimator 4 (ANN) : Accuracy : 67.76% AUC : 0.9360
Experiment: Density-based + Radon-based + Geometry-based + *Physics-based Estimator 1 (LR) : Accuracy : 63.53% AUC : 0.9221 Estimator 2 (RF) : Accuracy : 80.55% AUC : 0.9757 Estimator 3 (GBM) : Accuracy : 78.82% AUC : 0.9726 Estimator 4 (ANN) : Accuracy : 66.35% AUC : 0.9331
Analysis
Showed minor improvement on LR and RF but minor deterioration on other classifiers.
Physical properties of the wafer map if each failure points are assumed as point-like mass. Following features will be extracted: