This repo includes:
This repo can reproduce the main results in Table (1) of our main paper. All the source code and pre-trained models will be released to the public for further research.
Python 3 (Recommend to use Anaconda)
NVIDIA GPU + CUDA
Python packages:
pip install -r requirements.txt
To use the TSA-Net dataset, please follow the steps below:
Download the Dataset: Download the dataset from TSA-Net GitHub Repository.
Organize the Dataset: Place the downloaded dataset and camera response curve files into the 'code/data/' folder.
The structure of the 'code/data/' folder should look like this:
|--data
|--mask.mat
|--mask_3d_shift.mat
|--cameraSpectralResponse.mat
|--Truth
|--scene01.mat
|--scene02.mat
:
|--scene10.mat
Note: The files 'cameraSpectralResponse.mat,' 'mask.mat,' and 'mask_3d_shift.mat' have already been included in this repository.
python test.py --gpu_id=0 --weight_path=./ckpts/In2SET_2stg.pth
python test.py --gpu_id=0 --weight_path=./ckpts/In2SET_3stg.pth
python test.py --gpu_id=0 --weight_path=./ckpts/In2SET_5stg.pth
python test.py --gpu_id=0 --weight_path=./ckpts/In2SET_9stg.pth
python test_fps.py --gpu_id=0 --weight_path=./ckpts/In2SET_2stg.pth
python test_fps.py --gpu_id=0 --weight_path=./ckpts/In2SET_3stg.pth
python test_fps.py --gpu_id=0 --weight_path=./ckpts/In2SET_5stg.pth
python test_fps.py --gpu_id=0 --weight_path=./ckpts/In2SET_9stg.pth
Note: Due to size limitations for direct uploads on GitHub, our 9stg model is provided in three compressed parts: ckpts/In2SET_9stg.zip.001, ckpts/In2SET_9stg.zip.002, ckpts/In2SET_9stg.zip.003. Please use joint extraction for decompression.
#### 4. This repo is mainly based on MST and rTVRA. In our experiments, we use the following repos:
(1) MST: https://github.com/caiyuanhao1998/MST
(2) rTVRA: https://github.com/zspCoder/rTVRA-Release.git
We extend our sincere appreciation and gratitude for the valuable contributions made by these repositories.