The lossy Geometry-based Point Cloud Compression (G-PCC) inevitably impairs the geometry information of point clouds, which deteriorates the quality of experience (QoE) in reconstruction and/or misleads decisions in tasks such as classification. To tackle it, this work proposes GRNet for the geometry restoration of G-PCC compressed large-scale point clouds.
We recommend you to follow https://github.com/NVIDIA/MinkowskiEngine to setup the environment for sparse convolution.
TODO
chmod a+x ./tmc3
python test_solid.py --ckpts='ckpts_path' --GT_dir='GT_path' --last_kernel_size= --resolution= --posQuantscale=
python test_dense.py --ckpts='ckpts_path' --GT_dir='GT_path' --last_kernel_size= --resolution= --posQuantscale=
python test_dense_offset.py --ckpts='ckpts_path' --GT_dir='GT_path' --resolution= --posQuantscale=
python test_sparse.py --ckpts='ckpts_path' --GT_dir='GT_path' --resolution= --posQuantscale=