-
Probability Mass Function notebook is a duplicate of the random variables notebook which needs to be rectified.
-
(random idea based on looking at a rates and intensities example)
This is similar to the insurance case discussed with @thequackdaddy
Suppose we observed accidents of drivers over several perio…
-
Is there a way to implement a ```tfp.monte_carlo.expectation``` passing ```N``` samples for multiple random variables with different dimensions?
E.g.
```
tfp.monte_carlo.expectation( f=lambda s: ..…
-
```python
In [1]: from sympy import *
In [2]: from sympy.stats import *
In [3]: mu, sigma = symbols("mu sigma")
In [4]: N = Normal("N", mu, sigma)
In [5]: E(N)
Out[5]: mu
In [6]: E(Ma…
-
```
Define the random variables:
X = Normal(0,1)
Y = Normal(0,1)
Z = Normal(0,1)
And now the transformed variable:
W = sqrt(X**2+Y**2+Z**2)
Ask for the expectation:
E(X)
The answer is:
RuntimeE…
-
**Purpose**
This issue is raised for discussing the following points for phase 3 of the project,
1. Re-fining results generated by `sympy.stats` - Reducing the complexity of results(espescially …
-
right now unseeded calls to e.g. `keras.random.uniform` are going to acquire static seeds at trace time. this has a few undesirable consequences:
1) subsequent calls will have the same randomness e…
-
- https://arxiv.org/abs/1611.00712
- 2016 ICLR 2017
勾配降下法を用いて大規模な確率的計算グラフを最適化するためには、再パラメータ化が有効です。
このトリックの本質は、各確率的ノードを、そのパラメータの微分可能な関数と、固定分布を持つランダム変数にリファクタリングすることです。
リファクタリング後、連鎖律によってグラフを伝搬する損失の勾…
e4exp updated
3 years ago
-
Right now, `validate()` is a mandatory method for subclasses of `RandomVariable`, but many actual random variables do not have meaningful validation implemented.
We should decide whether most/all c…
-
**Describe the current behavior**
For current master the tests in batch_scatter_ops_test.py produce an invalid index list/tensor.
Check: https://github.com/tensorflow/tensorflow/blob/dec8e0b11f4…