-
**Detection of Cyber Grooming in Online Conversation
Patrick Bours, Halvor Kulsrud
December 2019**
**Why I chose this paper?**
It was a 2019 paper and they used various algorithms. They also tri…
-
### ML-Crate Repository (Proposing new issue)
:red_circle: **Profinity filter** :
:red_circle: ** Aim is to classify whether the used text is abusive or not ** :
:red_circle: **Dataset** :
:red_ci…
-
Sparse Laplacian Shrinkage combines a L1 based penalty and a quadratic informative penalty, similar to glm-net but with structured L2 penalization matrix
Sparse Laplacian Shrinkage is the first stran…
-
# 머신러닝
사람이 경험을 쌓고 머리가 좋아질때 우리는 그것을 '학습' 이라고한다. 사람은 학습된 지능으로 일을 하는데요, 인간이 하는일을 기계가 하도록 하기위해 기계를 학습시키는것 , 그것이 머신러닝(기계학습)입니다. 무언가를 판단해야할때 너무 많은 기준과 규칙이 있다면, 인간은 학습하고 판단하기를 어려워하고 많은 시간을 필요로하지만, 기계는 그렇지…
-
This is an issue to keep track of how Linear Models, Ridge, Lasso perform on the following toy problem:
```
x
-
### Idea Title
Implement Linear Regression Algorithm
### Idea Description
Linear regression is a fundamental statistical method used in supervised machine learning to model the relationship between…
-
1) Lasso regularization (L1 norm)
2) Ridge regularization (L2 norm)
-
-
### pycaret version checks
- [X] I have checked that this issue has not already been reported [here](https://github.com/pycaret/pycaret/issues).
- [X] I have confirmed this bug exists on the [la…
-
Given a sample, we get an estimator in the hypothesis space. The performance gap between the estimator and the best in the space is the estimation error. The estimator is a random function, so if we…