ADLab-AutoDrive / BEVHeight

An official code release of our CVPR'23 paper, BEVHeight
MIT License
200 stars 25 forks source link

BEVHeight: A Robust Framework for Vision-based Roadside 3D Object Detection

Lei Yang · Kaicheng Yu · Tao Tang · Jun Li · Kun Yuan · Li Wang · Xinyu Zhang · Peng Chen

CVPR 2023

Logo


PyTorch Lightning Docker

Paper PDF

BEVHeight is a new vision-based 3D object detector specially designed for roadside scenario. BEVHeight surpasses BEVDepth base- line by a margin of 4.85% and 4.43% on DAIR-V2X-I and Rope3D benchmarks under the traditional clean settings, and by 26.88% on robust settings where external camera parameters changes. We hope our work can shed light on studying more effective feature representation on roadside perception.

News

Incoming


Table of Contents
  1. Getting Started
  2. Acknowledgment
  3. Citation


Getting Started

Train BEVHeight with 8 GPUs

python [EXP_PATH] --amp_backend native -b 8 --gpus 8

Eval BEVHeight with 8 GPUs

python [EXP_PATH] --ckpt_path [CKPT_PATH] -e -b 8 --gpus 8

Experimental Results