AIDC-AI / Ovis

A novel Multimodal Large Language Model (MLLM) architecture, designed to structurally align visual and textual embeddings.
https://huggingface.co/AIDC-AI/Ovis1.6-Gemma2-9B
Apache License 2.0
506 stars 29 forks source link
chatbot llama3 multimodal multimodal-large-language-models multimodality qwen vision-language-learning vision-language-model

Ovis: Structural Embedding Alignment for Multimodal Large Language Model

Ovis (Open VISion) is a novel Multimodal Large Language Model (MLLM) architecture, designed to structurally align visual and textual embeddings. For a comprehensive introduction, please refer to the Ovis paper.

Ovis Illustration

Release

Contents

Install

Ovis has been tested with Python 3.10, Torch 2.2.0, Transformers 4.44.2, and DeepSpeed 0.14.4. For a comprehensive list of package dependencies, please consult the requirements.txt file. Before finetuning or inference, please install Ovis as follows.

git clone git@github.com:AIDC-AI/Ovis.git
conda create -n ovis python=3.10 -y
conda activate ovis
cd Ovis
pip install -r requirements.txt
pip install -e .

Model

Ovis can be instantiated with popular LLMs. We provide the following Ovis MLLMs:

Ovis MLLMs ViT LLM Model Weights Demo
Ovis1.6-Gemma2-9B Siglip-400M Gemma2-9B-It Huggingface Space
Ovis1.6-Llama3.2-3B Siglip-400M Llama-3.2-3B-Instruct Huggingface Space

Performance

With just 10B parameters, Ovis1.6-Gemma2-9B leads the OpenCompass benchmark among open-source MLLMs within 30B parameters.

performance-Ovis1_6-Gemma2-9B

Ovis1.6-Llama3.2-3B leads the OpenCompass benchmark among open-source MLLMs under 4B parameters, even surpassing Llama-3.2-11B-Vision-Instruct.

performance-Ovis1_6-Llama3_2-3B

Finetune

Finetuning Ovis1.6-Gemma2-9B is supported in ms-swift.

Inference

We provide an inference wrapper in ovis/serve/runner.py, which can be used as:

from PIL import Image
from ovis.serve.runner import RunnerArguments, OvisRunner
image = Image.open('IMAGE_PATH')
text = 'PROMPT'
runner_args = RunnerArguments(model_path='MODEL_PATH')
runner = OvisRunner(runner_args)
generation = runner.run([image, text])

Based on Gradio, Ovis can also be accessed via a web user interface:

python ovis/serve/server.py --model_path MODEL_PATH --port PORT

Quantization

We quantized Ovis1.6 using AutoGPTQ. For detailed information on running and creating your own quantized version, please refer to the respective Huggingface model cards: Ovis1.6-Gemma2-9B-GPTQ-Int4 and Ovis1.6-Llama3.2-3B-GPTQ-Int4. Quantized Ovis1.6 maintains performance comparable to its non-quantized counterpart while requiring less GPU memory:

Citation

If you find Ovis useful, please cite the paper

@article{lu2024ovis,
  title={Ovis: Structural Embedding Alignment for Multimodal Large Language Model}, 
  author={Shiyin Lu and Yang Li and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang and Han-Jia Ye},
  year={2024},
  journal={arXiv:2405.20797}
}

Team

This work is a collaborative effort by the MarcoVL team. We would also like to provide links to the following MLLM papers from our team:

License

This project is licensed under the Apache License, Version 2.0 (SPDX-License-Identifier: Apache-2.0).

Disclaimer

We used compliance-checking algorithms during the training process, to ensure the compliance of the trained model to the best of our ability. Due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the model is completely free of copyright issues or improper content. If you believe anything infringes on your rights or generates improper content, please contact us, and we will promptly address the matter.