AIRI-Institute / nablaDFT

nablaDFT: Large-Scale Conformational Energy and Hamiltonian Prediction benchmark and dataset
https://doi.org/10.1039/D2CP03966D
MIT License
167 stars 17 forks source link
benchmark dataset density-functional-theory dft machine-learning molecular-modeling quantum-chemistry

nablaDFT logo

# $\nabla^2$ DFT: A Universal Quantum Chemistry Dataset of Drug-Like Molecules and a Benchmark for Neural Network Potentials

CUDA versions License Ruff

This is the repository for nablaDFT Dataset and Benchmark. The current version is 2.0. The code and data from the initial publication are accessible here: [1.0 branch](https://github.com/AIRI-Institute/nablaDFT/tree/1.0).
Methods of computational quantum chemistry provide accurate approximations of molecular properties crucial for computer-aided drug discovery and other areas of chemical science. However, high computational complexity limits the scalability of their applications. Neural network potentials (NNPs) are a promising alternative to quantum chemistry methods, but they require large and diverse datasets for training. This work presents a new dataset and benchmark called $\nabla^2$ DFT that is based on the nablaDFT. It contains twice as much molecular structures, three times more conformations, new data types and tasks, and state-of-the-art models. The dataset includes energies, forces, 17 molecular properties, Hamiltonian and overlap matrices, and a wavefunction object. All calculations were performed at the DFT level (ωB97X-D/def2-SVP) for each conformation. Moreover, $\nabla^2$ DFT is the first dataset that contains relaxation trajectories for a substantial number of drug-like molecules. We also introduce a novel benchmark for evaluating NNPs in molecular property prediction, Hamiltonian prediction, and conformational optimization tasks. Finally, we propose an extendable framework for training NNPs and implement 10 models within it.
More details can be found in the [version 1 paper](https://pubs.rsc.org/en/content/articlelanding/2022/CP/D2CP03966D) and [version 2 paper](https://arxiv.org/abs/2406.14347). If you are using nablaDFT in your research paper, please cite us as ``` @article{khrabrov2024nabla2dftuniversalquantumchemistry, title={$\nabla^2$DFT: A Universal Quantum Chemistry Dataset of Drug-Like Molecules and a Benchmark for Neural Network Potentials}, author={Kuzma Khrabrov and Anton Ber and Artem Tsypin and Konstantin Ushenin and Egor Rumiantsev and Alexander Telepov and Dmitry Protasov and Ilya Shenbin and Anton Alekseev and Mikhail Shirokikh and Sergey Nikolenko and Elena Tutubalina and Artur Kadurin}, year={2024}, eprint={2406.14347}, archivePrefix={arXiv}, primaryClass={physics.chem-ph}, url={https://arxiv.org/abs/2406.14347}, } @article{10.1039/D2CP03966D, author ="Khrabrov, Kuzma and Shenbin, Ilya and Ryabov, Alexander and Tsypin, Artem and Telepov, Alexander and Alekseev, Anton and Grishin, Alexander and Strashnov, Pavel and Zhilyaev, Petr and Nikolenko, Sergey and Kadurin, Artur", title ="nablaDFT: Large-Scale Conformational Energy and Hamiltonian Prediction benchmark and dataset", journal ="Phys. Chem. Chem. Phys.", year ="2022", volume ="24", issue ="42", pages ="25853-25863", publisher ="The Royal Society of Chemistry", doi ="10.1039/D2CP03966D", url ="http://dx.doi.org/10.1039/D2CP03966D"} ``` ![pipeline](images/pipeline.png) ## Installation ```python git clone https://github.com/AIRI-Institute/nablaDFT && cd nablaDFT/ pip install . ``` ## Dataset We propose a benchmarking dataset based on a subset of [Molecular Sets (MOSES) dataset](https://github.com/molecularsets/moses). Resulting dataset contains 1 936 931 molecules with atoms C, N, S, O, F, Cl, Br, H. It contains 226 424 unique Bemis-Murcko scaffolds and 34 572 unique BRICS fragments.
For each molecule in the dataset we provide from 1 to 62 unique conformations, with 12 676 264 total conformations. For each conformation, we have calculated its electronic properties including the energy (E), DFT Hamiltonian matrix (H), and DFT overlap matrix (S). All properties were calculated using the Kohn-Sham method at ωB97X-D/def2-SVP levels of theory using the quantum-chemical software package [Psi4](https://github.com/psi4/psi4), version 1.5.
We provide several splits of the dataset that can serve as the basis for comparison across different models.
As part of the benchmark, we provide separate databases for each subset and task and a complete archive with wave function files produced by the Psi4 package that contains quantum chemical properties of the corresponding molecule and can be used in further computations. ### Downloading dataset #### Hamiltonian databases Links to hamiltonian databases including different train and test subsets are in file [Hamiltonian databases](./nablaDFT/links/hamiltonian_databases.json)
#### Energy databases Links to energy databases including different train and test subsets are in file [Energy databases](./nablaDFT/links/energy_databases.json) #### Raw psi4 wave functions Links to tarballs: [wave functions](./nablaDFT/links/nablaDFT_psi4wfn_links.txt) #### Summary file The csv file with conformations index, SMILES, atomic DFT properties and wfn archive names: [summary.csv](https://a002dlils-kadurin-nabladft.obs.ru-moscow-1.hc.sbercloud.ru/data/nablaDFTv2/summary.csv.gz) The csv file with conformations index, energies and forces for optimization trajectories: [trajectories_summary.csv](https://a002dlils-kadurin-nabladft.obs.ru-moscow-1.hc.sbercloud.ru/data/nablaDFTv2/summary_relaxation_trajectories.csv.gz) #### Conformations files Tar archive with xyz files [archive](https://a002dlils-kadurin-nabladft.obs.ru-moscow-1.hc.sbercloud.ru/data/nablaDFTv2/conformers_archive_v2.tar) ### Accessing elements of the dataset #### Hamiltonian database Downloading of the smallest file (`train-tiny` data split, 14 Gb): ```bash wget https://a002dlils-kadurin-nabladft.obs.ru-moscow-1.hc.sbercloud.ru/data/nablaDFTv2/hamiltonian_databases/train_2k.db ``` Minimal usage example: ```python from nablaDFT.dataset import HamiltonianDatabase train = HamiltonianDatabase("train_2k.db") # atoms numbers, atoms positions, energy, forces, core hamiltonian, overlap matrix, coefficients matrix, # moses_id, conformation_id Z, R, E, F, H, S, C, moses_id, conformation_id = train[0] ``` #### Energies database Downloading of the smallest file (`train-tiny` data split, 51 Mb): ```bash wget https://a002dlils-kadurin-nabladft.obs.ru-moscow-1.hc.sbercloud.ru/data/nablaDFTv2/energy_databases/train_2k_v2_formation_energy_w_forces.db ``` Minimal usage example: ```python from ase.db import connect train = connect("train_2k_v2_formation_energy_w_forces.db") atoms_data = train.get(1) ``` #### Working with raw psi4 wavefunctions Downloading of the smallest file (6,8 Gb): ```bash https://a002dlils-kadurin-nabladft.obs.ru-moscow-1.hc.sbercloud.ru/data/moses_wfns_big/wfns_moses_conformers_archive_0.tar tar -xf wfns_moses_conformers_archive_0.tar cd mnt/sdd/data/moses_wfns_big/ ``` A variety of properties can be loaded directly from the wavefunction files. See main paper for more details. Properties include DFT matrices: ```python import numpy as np wfn = np.load('wfn_conf_50000_0.npy', allow_pickle=True).tolist() orbital_matrix_a = wfn["matrix"]["Ca"] # alpha orbital coefficients orbital_matrix_b = wfn["matrix"]["Cb"] # beta orbital coefficients density_matrix_a = wfn["matrix"]["Da"] # alpha electonic density density_matrix_b = wfn["matrix"]["Db"] # beta electonic density aotoso_matrix = wfn["matrix"]["aotoso"] # atomic orbital to symmetry orbital transformation matrix core_hamiltonian_matrix = wfn["matrix"]["H"] # core Hamiltonian matrix fock_matrix_a = wfn["matrix"]["Fa"] # DFT alpha Fock matrix fock_matrix_b = wfn["matrix"]["Fb"] # DFT betta Fock matrix ``` and bond orders for covalent and non-covalent interactions and atomic charges: ```python import psi4 wfn = psi4.core.Wavefunction.from_file('wfn_conf_50000_0.npy') psi4.oeprop(wfn, "MAYER_INDICES") psi4.oeprop(wfn, "WIBERG_LOWDIN_INDICES") psi4.oeprop(wfn, "MULLIKEN_CHARGES") psi4.oeprop(wfn, "LOWDIN_CHARGES") meyer_bos = wfn.array_variables()["MAYER INDICES"] # Mayer bond indices lodwin_bos = wfn.array_variables()["WIBERG LOWDIN INDICES"] # Wiberg bond indices mulliken_charges = wfn.array_variables()["MULLIKEN CHARGES"] # Mulliken atomic charges lowdin_charges = wfn.array_variables()["LOWDIN CHARGES"] # Löwdin atomic charges ``` ## Models * [Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions (SchNOrb)](https://github.com/KuzmaKhrabrov/SchNOrb) * [SE(3)-equivariant prediction of molecular wavefunctions and electronic densities (PhiSNet)](./nablaDFT/phisnet/README.md) * [A continuous-filter convolutional neural network for modeling quantum interactions (SchNet)](./nablaDFT/ase_model/README.md) * [Equivariant message passing for the prediction of tensorial properties and molecular spectra (PaiNN)](./nablaDFT/ase_model/README.md) * [Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules (DimeNet++)](./nablaDFT/dimenetplusplus/README.md) * [EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations (EquiformerV2)](./nablaDFT/equiformer_v2/README.md) * [Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs (eSCN)](./nablaDFT/escn/README.md) * [GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets (GemNet-OC)](/nablaDFT/gemnet_oc/README.md) * [Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets (Graphormer3D)](./nablaDFT/graphormer/README.md) * [Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian (QHNet)](./nablaDFT/qhnet/README.md) ### Run For task start run this command from repository root directory: ```bash python run.py --config-name .yaml ``` For the detailed run configuration please refer to [run configuration README](./nablaDFT/README.md). ### Datamodules To create a dataset, we use interfaces from ASE, PyTorch Geometric and PyTorch Lightning. An example of the initialisation of ASE-type data classes (for SchNet, PaiNN models) is presented below: ```python datamodule = ASENablaDFT(split="train", dataset_name="dataset_train_tiny") datamodule.prepare_data() # access to dataset datamodule.dataset ``` For PyTorch Geometric data dataset initialized with PyGNablaDFTDatamodule: ```python datamodule = PyGNablaDFTDataModule(root="path-to-dataset-dir", dataset_name="dataset_train_tiny", train_size=0.9, val_size=0.1) datamodule.setup(stage="fit") ``` Similarly, Hamiltonian-type data classes (for SchNOrb, PhiSNet models) are initialised in the following way: ```python datamodule = PyGHamiltonianDataModule(root="path-to-dataset-dir", dataset_name="dataset_train_tiny", train_size=0.9, val_size=0.1) datamodule.setup(stage="fit") ``` Dataset itself could be acquired in the following ways: ```python datamodule.dataset_train datamodule.dataset_val ``` List of available dataset splits could be obtained with: ```python from nablaDFT.dataset import dataset_registry dataset_registry.list_datasets("energy") # for energy databases dataset_registry.list_datasets("hamiltonian") # for hamiltonian databases ``` For more detailed list of datamodules parameters please refer to [datamodule example config](./config/datamodule/nablaDFT_pyg.yaml). ### Checkpoint Available model checkpoints could be obtained with: ```python from nablaDFT import model_registry model_registry.list_models() ``` For complete list of available checkpoints for different training splits see [Pretrained models](./nablaDFT/README.md#pretrained-models). Links for checkpoints are available here: [checkpoints links](./nablaDFT/links/models_checkpoints.json) ### Tutorials and examples * [Basic access tutorial](examples/0a_basic_access.ipynb) * [Meta-information tutorial](examples/1a_meta_information.ipynb) Models training and testing example: * [PAINN](examples/PAINN_example.ipynb) * [Collab](https://colab.research.google.com/drive/1VaiPa05pu-55XR6eR4DXv6cC6fy3lUwJ?usp=sharing) * [GemNet-OC](examples/GemNet-OC_example.ipynb) Models inference example: * [GemNet-OC](examples/Inference%20example.ipynb) ### Metrics In the tables below ST, SF, CF denote structures test set, scaffolds test set and conformations test set correspondingly.
Model MAE for energy prediction $\times 10^{−2} E_h$ (↓)
Test ST Test SF Test CF
tiny small medium large tiny small medium large tiny small medium large
LR 4.86 4.64 4.56 4.56 4.37 4.18 4.12 4.15 3.76 3.61 3.69 3.95
SchNet 1.17 0.90 1.10 0.31 1.19 0.92 1.11 0.31 0.56 0.63 0.88 0.28
SchNOrb 0.83 0.47 0.39 0.39 0.86 0.46 0.37 0.39 0.37 0.26 0.27 0.36
DimeNet++ 42.84 0.56 0.21 0.09 37.41 0.41 0.19 0.08 0.42 0.10 0.09 0.07
PAINN 0.82 0.60 0.36 0.09 0.86 0.61 0.36 0.09 0.43 0.49 0.28 0.08
Graphormer3D-small 1.54 0.96 0.77 0.37 1.58 0.94 0.75 0.36 0.99 0.67 0.58 0.39
GemNet-OC 2.79 0.65 0.28 0.22 2.59 0.59 0.27 0.23 0.52 0.20 0.15 0.24
Equiformer_V2 2.81 1.13 0.28 0.19 2.65 1.13 0.28 0.18 0.45 0.23 0.24 0.16
eSCN 1.87 0.47 0.94 0.42 1.87 0.47 0.92 0.42 0.48 0.31 0.80 0.44
Model MAE for forces prediction $\times 10^{−2} E_h*A^{-1}$ (↓)
Test ST Test SF Test CF
tiny small medium large tiny small medium large tiny small medium large
SchNet 0.44 0.37 0.41 0.16 0.45 0.37 0.41 0.16 0.32 0.30 0.37 0.14
DimeNet++ 1.31 0.20 0.13 0.065 1.36 0.19 0.13 0.066 0.26 0.12 0.10 0.062
PAINN 0.37 0.26 0.17 0.058 0.38 0.26 0.17 0.058 0.23 0.22 0.14 0.052
Graphormer3D-small 1.11 0.67 0.54 0.26 1.13 0.68 0.55 0.26 0.82 0.54 0.45 0.23
GemNet-OC 0.14 0.051 0.036 0.021 0.10 0.051 0.036 0.021 0.073 0.042 0.032 0.021
Equiformer_V2 0.30 0.23 0.21 0.17 0.31 0.23 0.21 0.17 0.16 0.15 0.16 0.13
eSCN 0.10 0.051 0.036 0.021 0.10 0.051 0.036 0.021 0.065 0.037 0.029 0.021
Model MAE for Hamiltonian matrix prediction $\times 10^{−4} E_h$ (↓)
Test ST Test SF Test CF
tiny small medium large tiny small medium large tiny small medium large
SchNOrb 198 196 196 198 199 198 200 199 215 207 207 206
PhiSNet 1.9 3.2(*) 3.4(*) 3.6(*) 1.9 3.2(*) 3.4(*) 3.6(*) 1.8 3.3(*) 3.5(*) 3.7(*)
QHNet 9.8 7.9 5.2 6.9(*) 9.8 7.9 5.2 6.9(*) 8.4 7.3 5.2 6.8(*)
Model MAE for overlap matrix prediction $\times 10^{−5}$(↓)
Test ST Test SF Test CF
tiny small medium large tiny small medium large tiny small medium large
SchNOrb 1320 1310 1320 1340 1330 1320 1330 1340 1410 1360 1370 1370
PhiSNet 2.7 3.0(*) 2.9(*) 3.3(*) 2.6 2.9(*) 2.9(*) 3.2(*) 3.0 3.2(*) 3.1(*) 3.5(*)
We test the ability of the trained models to find low energy conformations.
Model Optimization metrics
Optimization $pct$ % (↑) Optimization $pct_{div}$ % (↓) Optimization success $pct$ % (↑)
tiny small medium large tiny small medium large tiny small medium large
SchNet 38.56 39.75 36.50 75.51 39.6 34.85 45.82 0.8 0. 0. 0. 4.00
PAINN 60.26 66.63 74.16 98.50 21.25 10.35 7.00 0.05 0 0.11 2.60 77.09
DimeNet++ 32.27 89.16 93.22 96.35 96.55 20.50 7.60 1.00 0 13.02 34.04 55.71
EquiformerV2 64.41 76.11 75.24 86.10 92.75 84.55 84.75 76.10 6.90 12.62 16.38 32.01
eSCN 76.83 85.94 89.34 97.27 59.10 27.70 11.00 0.80 11.49 19.23 25.39 53.38
GemNet-OC 69.04 85.57 92.42 100.06 11.55 0.75 0.60 0.40 0.91 10.42 30.94 90.71
Fields with - or * symbols correspond to the models, which haven't converged and will be updated in the future.