AdamWhiteHat / BigRational

Arbitrary precision rational number class
MIT License
24 stars 2 forks source link
arbitrary-precision biginteger csharp fractions math mathematics numerics rational-numbers

BigRational

Arbitrary precision rational number class

Here is the class signature, so you can see what it supports, but suffice it to say it supports all the typical arithmetic operations one would expect from an arithmetic class library.

public class BigRational : IComparable, IComparable, IEquatable { // // Static Members //

public static BigRational One;
public static BigRational Zero;
public static BigRational MinusOne;

//
// Instance Properties
//

public BigInteger WholePart { get; }
public Fraction FractionalPart { get; }

public int Sign { get; }
public bool IsZero { get; }

//
// Constructors
//

public BigRational();
public BigRational(int value);
public BigRational(BigInteger value);
public BigRational(Fraction fraction);
public BigRational(BigInteger whole, Fraction fraction);
public BigRational(BigInteger numerator, BigInteger denominator);
public BigRational(BigInteger whole, BigInteger numerator, BigInteger denominator);
public BigRational(float value);
public BigRational(double value);
public BigRational(decimal value);

// Parse from a string //
public static BigRational Parse(string value);

//
// Arithmetic Methods
//

public static BigRational Add(BigRational augend, BigRational addend);
public static BigRational Subtract(BigRational minuend, BigRational subtrahend);
public static BigRational Multiply(BigRational multiplicand, BigRational multiplier);
public static BigRational Divide(BigInteger dividend, BigInteger divisor);
public static BigRational Divide(BigRational dividend, BigRational divisor);
public static BigRational Remainder(BigInteger dividend, BigInteger divisor);
public static BigRational Mod(BigRational number, BigRational mod);
public static BigRational Pow(BigRational baseValue, BigInteger exponent);
public static BigRational Sqrt(BigRational value);
public static BigRational NthRoot(BigRational value, int root);

public static BigRational Abs(BigRational rational);
public static BigRational Negate(BigRational rational); 

public static double Log(BigRational rational);

public static BigRational Add(Fraction augend, Fraction addend);
public static BigRational Subtract(Fraction minuend, Fraction subtrahend);
public static BigRational Multiply(Fraction multiplicand, Fraction multiplier);
public static BigRational Divide(Fraction dividend, Fraction divisor);

//
// GCD & LCM
//

public static BigRational GreatestCommonDivisor(BigRational left, BigRational right);
public static BigRational LeastCommonDenominator(BigRational left, BigRational right);

//
// Arithmetic Operators
//

// Binary //
public static BigRational operator +(BigRational augend, BigRational addend);
public static BigRational operator -(BigRational minuend, BigRational subtrahend);
public static BigRational operator *(BigRational multiplicand, BigRational multiplier) ;
public static BigRational operator /(BigRational dividend, BigRational divisor);
public static BigRational operator %(BigRational dividend, BigRational divisor);

// Unitary //
public static BigRational operator +(BigRational rational) => Abs(rational);
public static BigRational operator -(BigRational rational) => Negate(rational);
public static BigRational operator ++(BigRational rational) => Add(rational, BigRational.One);
public static BigRational operator --(BigRational rational) => Subtract(rational, BigRational.One);

//
// Comparison Operators
//

public static bool operator ==(BigRational left, BigRational right);
public static bool operator !=(BigRational left, BigRational right);
public static bool operator <(BigRational left, BigRational right) ;
public static bool operator <=(BigRational left, BigRational right);
public static bool operator >(BigRational left, BigRational right) ;
public static bool operator >=(BigRational left, BigRational right);

//
// Compare To
//

public static int Compare(BigRational left, BigRational right); 
public int CompareTo(BigRational other); // IComparable<Fraction>
int IComparable.CompareTo(Object obj); // IComparable

//
// Conversion
//

// To BigRational //
public static implicit operator BigRational(byte value);
public static implicit operator BigRational(SByte value);
public static implicit operator BigRational(Int16 value);
public static implicit operator BigRational(UInt16 value);
public static implicit operator BigRational(Int32 value);
public static implicit operator BigRational(UInt32 value);
public static implicit operator BigRational(Int64 value);
public static implicit operator BigRational(UInt64 value);
public static implicit operator BigRational(BigInteger value);
public static explicit operator BigRational(float value);
public static explicit operator BigRational(double value);
public static explicit operator BigRational(decimal value);

// From BigRational //
public static explicit operator double(BigRational value);
public static explicit operator decimal(BigRational value);
public static implicit operator Fraction(BigRational value);

//
// Equality Methods
//

public bool Equals(BigRational other);
public override bool Equals(Object obj);
public override int GetHashCode();

//
// Transform Methods
//

public static BigRational Reduce(BigRational value);
public static BigRational NormalizeSign(BigRational value);
public Fraction GetImproperFraction();

//
// Overrides
//

public override string ToString();
public String ToString(String format);
public String ToString(IFormatProvider provider);
public String ToString(String format, IFormatProvider provider);

}

This library is also available on nuget: https://www.nuget.org/packages/ExtendedNumerics.BigRational

#

Other mathy projects & numeric types

I've written a number of other polynomial implementations and numeric types catering to various specific scenarios. Depending on what you're trying to do, another implementation of this same library might be more appropriate. All of my polynomial projects should have feature parity, where appropriate[^1].

[^1]: For example, the ComplexPolynomial implementation may be missing certain operations (namely: Irreducibility), because such a notion does not make sense or is ill defined in the context of complex numbers).